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Abstract— Motion prediction of road users in traffic scenes
is critical for autonomous driving systems that must take
safe and robust decisions in complex dynamic environments.
We present a novel motion prediction system for autonomous
driving. Our system is based on the Bayesian inverse planning
framework, which efficiently orchestrates map-based goal ex-
traction, a classical control-based trajectory generator and an
ensemble of light-weight neural networks specialised in motion
profile prediction. In contrast to many alternative methods, this
modularity helps isolate performance factors and better inter-
pret results, without compromising performance. This system
addresses multiple aspects of interest, namely multi-modality,
motion profile uncertainty and trajectory physical feasibility.
We report on several experiments with the popular highway
dataset NGSIM, demonstrating state-of-the-art performance in
terms of trajectory error. We also perform a detailed analysis of
our system’s components, along with experiments that stratify
the data based on behaviours, such as change lane versus follow
lane, to provide insights into the challenges in this domain.
Finally, we present a qualitative analysis to show other benefits
of our approach, such as the ability to interpret the outputs.

I. INTRODUCTION

Motion prediction is receiving significant attention be-
cause of the need for reactive decision making in numer-
ous robotics applications. In autonomous driving, it is the
problem of inferring the future states of road users in the
traffic scene. Navigating complex dynamic environments in
a safe and efficient manner requires to observe, reason about
and respond to relevant objects or hazards along the way.
Complex reasoning [1], [2], [3], [4], such as when to perform
maneuvers or low-level path planning optimizations, is not
possible without making predictions about various properties
of interest, such as agent future goals and trajectories.

Motion prediction is challenging because of the multitude
of factors that determine future behaviour, not all of which
may be explicitly modelled. Algorithms are expected to gen-
eralise to different environmental situations, such as a wide
range of different layouts including merges, junctions, round-
abouts etc. Combined with varying intentions and behaviours
of different agents, this can result in many possible future
outcomes that need to be captured. Furthermore, low-level
aspects that affect the possible future trajectories, such as ve-
hicle characteristics (e.g. dimensions, turning circle etc), type
of vehicle (e.g. emergency services, transport, motorbikes
etc) and driving styles (e.g. aggressive versus conservative),
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further increase the resulting uncertainty. Besides multi-
modality and spatial uncertainty, using motion prediction
within a safety critical and real-time motion planning system
extends the list of requirements. System maintainability and
physical realism are additional qualities of interest which
are less frequently addressed [5], e.g. many state-of-the-art
methods, such as [6], [7], [8], [9], are end-to-end regression-
based systems which might not produce physically-feasible
trajectories. As described in [10], machine learning systems
can incur massive maintenance costs because of system-level
anti-patterns, such as entanglement which prevents isolated
improvements.

In contrast, hybrid systems, such as our proposed motion
prediction system, allow to include light-weight machine
learning models, isolate performance factors, replace compo-
nents and interpret results while demonstrating state-of-the-
art performance. Our proposed prediction system is general
and can address the majority of the previously described
challenges. In this paper, we evaluate our method in the
highways setting, which defines a microcosm of the complex
dynamics that one expects to find in everyday driving [11].
Highways include multiple lanes; space-sharing conflicts are
common between the on-ramp vehicles and vehicles on
the outermost lane and, similarly, during lane change and
overtaking behaviours when vehicles need finding suitable
gaps while maintaining safety distances.

Our contributions are two-fold:

• we present Flash, a novel hybrid motion prediction
system that is based on the Bayesian inverse planning
framework. It efficiently orchestrates map-based goal
extraction, a classical control-based trajectory genera-
tor and an ensemble of light-weight neural networks
specialised in motion profile prediction. This system
models properties of interest such as multi-modality
and motion profile uncertainty while providing strong
guarantees that kinematic and motion profile constraints
are respected;

• we evaluate the system thoroughly on the popular high-
way dataset - NGSIM [12], comparing with alternative
multimodal methods. Flash improves the state-of-the-
art trajectory error reported in [7] by 8.79 % for a 5 s
prediction horizon, it guarantees kinematic and motion
profile constraints by construction, and its training is
96.92 % faster than in [9]. We analyse single compo-
nents such as motion profile prediction and Bayesian
inference, showing that the modularity helps isolate
performance factors and interpret predictions.
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II. RELATED WORK

The proposed system predicts the motion of the traffic
participants with a Bayesian inverse planning approach [13],
[14]. Previous work [2], [15] has shown that Bayesian
inference combined with defined behaviours extracted from a
layout of the scene generates predictions that are explainable
by means of rationality; i.e. optimality given certain metrics.
Another benefit of such an architecture, where Bayesian
inference is the top level component, is its efficiency as
reported by [16]; we also show empirically this is true.

Planning literature has a long history in using vehicle
models in combination with low-level trajectory generators,
see [17] for a review of algorithms for generating paths,
motion profiles and trajectories. On the other hand, such
methods are rarely used in prediction. [18] have combined
a data-driven method with a polynomial to offer some
level of smoothness in the output. This approach doesn’t
offer any guarantees and the resulting trajectories can still
be kinematically infeasible. To address this limitation, [5]
have used a vehicle model together with a path following
algorithm, in particular pure-pursuit [19]. We use a similar
solution in our trajectory generation component.

There are several examples of prediction methods that
focus on a simplified version of the problem: motion pro-
file prediction, see [20] for a comparison. In this space,
physics-based models, e.g. constant velocity and constant
acceleration, can be accurate in the short-term, but they do
not consider other traffic agents. More evolved analytical
solutions, such as Intelligent Driver Model (IDM) [21]
to generate a car following behaviour and MOBIL [22]
for lane change behaviour, have been used successfully in
planning [1] and simulation for testing [23]. Still, these are
deterministic methods and limited to capture only part of the
context. To address these limitations, we integrate Bayesian
inverse planning with an ensemble of neural networks, in
particular mixture density networks [24] modelling motion
profile uncertainty [7], [25], to predict the future motion
profile while considering traffic context, i.e. the motion and
relative spatial configuration of neighbouring agents.

Neural network based approaches have become very pop-
ular in motion prediction. Initially, these data-driven methods
have been proposed without the use of maps [26]. However,
utilising a map can have countless benefits, for example
anchoring to the driveable area, capturing rules of the road,
reducing the hypothesis space, disambiguate intentions etc.
Lately, the majority of high-performing work in structured
environments relies on a map in a variety of ways: from
minor cues [6], [8], [9] to a rasterized version that contains
the complete information including traffic signals in some
of the cases [27], [28], [29], [30]. Another categorisation
criterion is that these implementations are generally end-
to-end trained. Our system is also heavily reliant on a
map definition. Different to previous work, our networks
do not consume map information at input, but rather are
trained as specialised on behaviours extracted from the layout
which can be reused when that behaviour is available. Such

a specialisation permits independent training, tuning and
inspection.

III. PROBLEM DEFINITION

The objective of motion prediction is to produce possible
future trajectories and estimate how likely these are given
the history of observations of the observable agents. We
define the history of k + 1 observations for an agent i as
a sequence of coordinates (x, y), orientations θ, and velocity
vectors v ∈ R2: hi = [(xit, y

i
t, θ

i
t,v

i
t)]
k
t=0, preceding and

containing the current timestep t = k. Similarly, we define
the predicted ŷi = [(x̂it, ŷ

i
t, θ̂

i
t, v̂

i
t)]
T
t=k+1 and ground truth

future yi = [(xit, y
i
t, θ

i
t,v

i
t)]
T
t=k+1 trajectories up to the

horizon T . These can be decomposed into a path, which
is a sequence of N positions [(xi, yi)]Nn=0, and a motion
profile, which is a sequence of speeds [sit]

T
t=k+1 from which

higher-order derivatives such as acceleration ait and jerk jit
can be estimated. There are two challenges that a prediction
system faces: the space of possible future trajectories is
continuous and the future is uncertain. The former can
be handled by predicting a spatial uncertainty attached to
the discrete predicted trajectories. For example, one can
model this spatial uncertainty with a multivariate Gaussian
capturing the position variance at each predicted future state.
The latter can be addressed by producing a multimodal
output, i.e. a discrete distribution over a set of predicted
trajectories P (ŷi).

IV. METHODS

A. Overview

The proposed model performs multimodal prediction by
taking a Bayesian inverse planning approach [13]; it recur-
sively compares previously predicted trajectories with obser-
vations to estimate likelihoods and computes a joint posterior
distribution over goals and trajectories using Bayesian in-
ference. An overview of the system is shown in Figure 1.
It involves four main components which we will discuss
in more detail: i.) goal and path extraction, ii.) motion
profile prediction, iii.) trajectory generation and iv.) Bayesian
inference.

B. Goal and Path Extraction

High-definition maps are useful in various aspects of
self-driving; for example a map can help disambiguate the
intentions of other agents [2], [15] and aid planning in
challenging traffic situations [31]. We follow the OpenDrive
standard [32] and implement our own layout definition for
querying the geometry of roads and lanes, their properties,
e.g. lane types, and how they are interconnected with each
other. Given the position and orientation of an agent i at time
t, we extract its possible goals git by exploring all lane graph
traversals up to a depth. In highway situations, the immediate
goals correspond to staying in the lane, or staying in the lane
while maintaining the current lateral offset to the midline, or
changing to a neighbour lane, or entering the highway if the
agent is on the entry ramp, or exiting it if the agent is on the
slow lane close to an exit ramp. We refer to this collection of



Fig. 1: System overview. The diagram shows the main components in grey boxes and their interconnections. Taking a
Bayesian inverse planning approach, outputs becomes inputs at the next timestep, see dotted lines.

Fig. 2: Portion of the I-80 highway layout with hypothesized
goals and path extraction for two agents. Agents’ hypothe-
sized goals depend on their positions on the road layout.

goals as the hypothesized goals. Figure 2 illustrates the use
of lane midlines with an optional offset as reference paths for
each goal. The goals correspond to intentions that an agent
could have and our system’s multimodality derives from this
set of possible intentions.

C. Motion Profile Prediction

The predictive performance of different motion profile
models varies strongly with the prediction horizon and traffic
conditions, such as the congestion level [20]. We chose a
neural network based approach for this task as these capture
more contextual variations and exploit the availability of
training data [20]. Due to our proposed architecture, the
motion profile prediction task is narrow and well defined.
In addition to this we also further split the data according to
the behaviour being performed, i.e. lane follow versus change
lane, and context, i.e. number of front and side agents. These
aspects permit the use of an ensemble of specialised and
lightweight Mixture Density Networks (MDNs) [24].

Each model in the ensemble consumes a different sized
1D feature vector z. The features capture properties of the
target agent being predicted as well as properties of front
agents and side agents in the target agent’s neighbourhood.
These properties include agents’ speeds, acceleration values,
the agent class c ∈ {car, truck,motorbike, ...}. Lane fol-
low models include the headway distances from the target
vehicle. Lane change models consume additional features
such as the neighbouring side, if the side agents are in front
or behind the target vehicle, the centre to centre distance
to the target vehicle and the shortest distance between the
vehicles’ polygons and the target vehicle. Highway entries
and exits are considered lane changes. In this work, we
conduct experiments with agents within a 60 m radius as
in [7], including up to 3 agents in front of target vehicle
and up to 3 side agents on each side. Given this, the final
ensemble is made of 4 lane follow models, each specialised
for a different number of front agents, and 16 lane change
models, each specialised for a different number of front and
side agents.

We define a target motion profile ympt=0 = [rt]
N
t=1 as a

sequence of distances at multiple timesteps, where N is the
total number of predicted timesteps. We define a predicted
motion profile as ŷmpt=0. N is a function of horizon and
delta time, respectively 5 s and 1 s, hence 5. Each MDN
model learns the joint distribution p(z,ymp) in the form of
a multivariate Gaussian mixture model with M multivariate
Gaussian functions:

p(z,ymp) =

M∑
m=1

πmN(z,ymp|µm,Σm), where (1)

πm, µm and Σm are the probability, mean vector, and
diagonal covariance matrix of the mth multivariate Gaus-



sian mixture component. In this work, we set M to 1
and rely on goal extraction and the ensemble to handle
multimodality. Therefore, the vector of predicted means µm
represent the predicted motion profile ŷmp. MDNs model
motion profile uncertainty, predicting the mixture parameters
including variances instead of single outputs. We denote each
m component’s prediction error as εm and train the model
with the Negative Log Likelihood (NLL) loss function:

NLL = − ln

M∑
m=1

πme
− 1

2 ε
T
mΣ−1

m εm−ln (
√

(2π)N |Σm|) (2)

In this architecture, each MDN consists of 2 fully connected
layers, 64 and 32 neurons each, with relu activations. Each
model is trained on a specialised dataset split, augmented
with samples from the other splits. For instance, lane follow
networks considering two front agents are trained with lane
follow samples with at least 2 front agents and, similarly,
lane change networks considering two side agents are trained
with lane change samples with at least 2 side agents. Lane
follow networks are trained with a learning rate of 0.001 and
a batch size of 1024 for 10 epochs. Lane change networks
are trained with the same learning rate and a batch size of
32 for 20 epochs.

D. Pure Pursuit Trajectory Generator

Despite their strong ability to model context, neural net-
works are not interpretable and can perform poorly when
conditions change [33], [34]. Similarly to previous work [5],
we also use pure pursuit [19] to address these challenges
and generate physically feasible trajectories describing how
each agent might reach any of its hypothesized goals. Pure
pursuit is a path tracking algorithm that uses a controller and
a vehicle model to generate a trajectory that minimises the
error from the target motion profile and the target path. In
our implementation, the neural networks provide the target
motion profile while the target path is extracted from the
map as described before. The path tracking approach imitates
how humans drive; they look at a point they want to go
to and control the car to reach it. As shown in Figure 3,
the algorithm chooses a goal position (xgit , y

gi
t ) using a

predefined lookahead distance parameter ld and calculates
the curvature that will move an agent from its current
position to the target position while maintaining a fixed
steering angle. An agent’s state at time t is described using

Fig. 3: Goal selection for pure pursuit trajectory generator.

the centre position (xit, y
i
t), current orientation θit and speed

sit. Since all agents are vehicles, we use a kinematic bicycle
model to represent their motion. In addition to the state of
the vehicle, we also require the distance between the rear
axle and the centre position Lir and the wheelbase length Li.
Given a control input uit = (ait, σ

i
t) at time t composed of

acceleration and steering angle respectively, the Equation 3
and Figure 4 describe the motion of the vehicle. Since we
use the centre position to describe the state of a vehicle, we
need to compute the side slip angle βit = tan−1(

Li
r

Li tan(σit)).
Finally, ∆t represents the time difference between two time
steps.

d = sit∆t+
ait∆t

2

2
xit+1 = xit + dcos(θit + βit)

yit+1 = yit + dsin(θit + βit)

θit+1 = θit +
d

L
cos(βit)tan(σit)

sit+1 = sit + ait∆t

(3)

Fig. 4: Kinematic bicycle model.

The control input uit is computed using a proportional
controller with a gain kp = 2 for each of the two components
independently. The acceleration input at time t is the speed
error to the future target speeds at t′ = t + 5∆t. The final
speed is used as target for the final 5∆t of the prediction
horizon. The target speeds are retrieved from the motion
profile prediction output ŷmp, in particular we predict at 1 Hz
and linearly interpolate them at 10 Hz. We cap acceleration
using a maximum acceptable absolute acceleration Ma = 6.0
and absolute jerk Mj = 10.0 limits. Similarly, we use
the orientation error for computing the steering angle and
we cap it using a predefined maximum curvature Mc =
0.3. The orientation error θεit is the difference between the
current vehicle orientation and the target orientation, i.e. the
vehicle pointing directly to the goal position on the path.
We then limit the curvature of the circle that the vehicle
would describe to the maximum accepted one as shown in
Equation 4.

κ = min
(

2
sin(θε

i
t)

ld
,Mc

)
σit = tan−1(κL)

(4)



E. Bayesian Inference

The remaining characteristics of our system are i.) pro-
cessing the history of observations and ii.) performing mul-
timodal trajectory prediction. The first of these is important
when noise level is high in individual observations, while
the latter is necessary to handle the uncertainty due to the
unknown intention of the target agent. We achieve both
by recursively consuming the observations in the history
input and estimating the latent goal git ∈ git of a visible
agent i via online Bayesian inference, see Equation 5.
P (git=k−1|yit=k−1) represents the previous posterior and is
used as a prior in the current timestep. At t = 0 a uniform
prior U(git=k−1) is used.

P̂ (git=k|yit=k) ∝ P (yit=k|git=k−1)P (git=k−1|yit=k−1) (5)

The current implementation uses a single trajectory for
a specific goal at a certain timestep. The likelihood of
each goal and its corresponding trajectory is estimated by
comparing previously predicted trajectories ŷit=k−1 with the
observed agent state at current timestep t = k. We extract
the velocity direction φit from the velocity vector vit and
use it in our likelihood estimation as it is more robust to
noise compared to using the vehicle orientation θ. Variations
between predicted states and observed states are captured
assuming a normal distribution on the position and velocity
direction of the agent at the current timestep with fixed
variances σ2 for each term. There is a weight ω for each
one of the three likelihood terms that allows us to tune their
importance. The values we used are ωx = 0.4, ωy = 0.4 and
ωφ = 0.15

P (yit=k|git=k−1) ≈ ωxN (xit=k|x̂it=k, σ2
x)

× ωyN (yit=k|ŷit=k, σ2
y)× ωφN (φit=k|φ̂it=k, σ2

φ) (6)

In certain situations, goals can only be reached if an
agent executes an uncomfortable maneuver which should
imply that those goals are less likely. To capture this aspect,
trajectories with lateral accelerations ait above a predefined
threshold maxa, 0.0 in our implementation, are penalised
proportionally to the amount of violation. We integrate this as
a bias term and multiply the probability of the corresponding
goal with a weight that is computed using the maximum lat-
eral acceleration maxg

i

a of the trajectory and an exponential
decay function. See Equation 7, where µ is a normalisation
factor and λ, 0.5 in our implementation, is the parameter that
determines the amount of punishment. Lateral acceleration
values are computed as ait =

vit
2

rit
where rit is the radius of

the circle that the vehicle is currently describing given its
current steer angle and assuming a kinematic bicycle model.

P̄ (git=k|yit=k) = µP̂ (git=k|yit=k)× e−λ(maxgi

a −maxa) (7)

An agent’s goal may change in time. For example, one
agent has finished a lane change and wishes to perform a
lane change back in order to complete an overtake. Similarly

to [13], we add a forgetting step which has the effect of
smoothing the posterior, balancing recent evidence and past
evidence. We mix the output of the Bayes update with a
uniform distribution to get the final posterior, see Equation 8,
where the parameter γ, 0.1 in our implementation, deter-
mines the amount of smoothing.

P (git=k|yit=k) = (1− γ)P̄ (git=k|yit=k) + γU(git=k) (8)

Finally, we need to account for goals changing due to the
agent motion through the layout which will result in a change
in the number of hypothesized goals. If a goal is no longer
achievable, e.g. the agent has passed the exit ramp, then the
goal is removed and its mass is distributed equally among the
remaining goals. Similarly, a new goal is added with mass
equal to the value that it would have if we assume a uniform
distribution over the complete set of hypothesized goals. This
new mass P (gnew) = 1

goals count is equally drawn from the
masses of the other already existing goals. Otherwise, there is
a 1:1 mapping between goals at t = k and those at t = k−1
and our map definition makes it straightforward to perform
the matching.

V. EXPERIMENTS

We evaluate our system on the Next Generation Simulation
(NGSIM) dataset [12], which is seen as a standard for
highway scenarios. NGSIM includes vehicle trajectory data
acquired from two US highways, US-101 and I-80, using
CCTV cameras and a semi-automatic annotation process.
Each dataset part was captured at 10 Hz over a time span of
45 minutes and consists of 15 min segments of mild, mod-
erate and congested traffic conditions. The dataset provides
the coordinates of vehicles in UTM coordinates and a local
coordinate system. We used UTM coordinates for alignment
with our geo-referenced OpenDrive map annotations. As in
previous related works [6], we split the datasets into train
(70 %), validation (10 %) and test (20 %) based on the vehicle
ID. Each vehicle from each split is chosen as the target
vehicle, defining one sample. We split the trajectories of
the target vehicle into segments of 8 s, where we use 3 s
of history and a 5 s prediction horizon.

A. Overall System Evaluation

We compare our system with other multimodal predic-
tion methods using two standard trajectory error metrics,
Root Mean Squared Error (RMSE) and Final Displacement
Error (FDE). As in [7], they are calculated by comparing
the ground truth trajectory with the most likely trajectory.
Lower scores are better. Table I includes the numerical
comparison. Both RMSE and FDE scores of our system are
lower than that of a simpler baseline, the Constant Velocity
(CV) model [25], as well as that of other deep learning
methods [6], [8] for all time horizons. We outperform the
closest competitor [7] for most time horizons (3 s, 4 s, 5 s).
Our system is comparable to the best state-of-the-art for
shorter and easier horizons (1 s, 2 s, 3 s) and significantly
improve over the longer, more difficult horizons (4 s, 5 s).



TABLE I: Overall system comparison on the NGSIM test set
using RMSE and FDE of the most likely trajectory. Lower
scores are better.

Time Horizon 1 s 2s 3s 4s 5s

RMSE [m]

CV [25] 0.76 1.82 3.17 4.80 6.70
CSP(M) [6] 0.59 1.27 2.13 3.22 4.64

PiP [8] 0.55 1.18 1.94 2.88 4.04
SAMMP [7] 0.51 1.13 1.88 2.81 3.98

Flash 0.52 1.15 1.84 2.64 3.63

FDE [m]

CV [25] 0.46 1.24 2.27 3.53 4.99
CSP(M) [6] 0.39 0.91 1.55 2.36 3.39
SAMMP [7] 0.31 0.78 1.35 2.04 2.90

Flash 0.33 0.82 1.34 1.91 2.62

B. Motion Profile Prediction Analysis

The previously reported overall error can be caused by sev-
eral factors. In this section, we focus on what we observed to
be the most significant contributor: motion profile prediction.
In addition to the previously reported dataset pre-processing
steps, we split the dataset based on the observed behaviour of
the agent being predicted: lane follow and lane change. We
evaluate the motion profile prediction component using the
RMSE and Mean Negative Log Likelihood (MNLL) errors
on the predicted future distance. MNLL takes uncertainty
into account [6]. We adapt the RMSE to compute it on a
single dimension. The NLL is already defined in Equation 2,
where the displacement error at time t for a Gaussian
component m centered at d̃m,t is εm,t = dm,t − d̃m,t. We
average across the dataset to compute the MNLL value.

Figure 5 show the relative performance of different lane
follow motion profile prediction models. We compared
physics-based methods, Constant Velocity (CV) and De-
caying Acceleration (DA), and each neural network in the
ensemble. We do not report Constant Acceleration since it
consistently obtains the largest errors. We model the physics-
based model uncertainty at each predicted timestep using
standard deviations and modelling the errors of the CV or
DA assumption with a centered Gaussian distribution at each
timestep. Neural networks outperform physics-based models.
Considering more agents leads to lower errors since traffic
dynamics, such as safe distancing, stop and go motion and
motion initiation, can be modelled.

Tables II and III show the performance of the lane change
networks. We report RMSE and MNLL at 5 s for brevity.
The ensemble always improves over physics-based models,
whose RMSE and MNLL errors are always above 7.34 m
and 3.44. The performance of the lane change networks is
not influenced by the number of front agents as much as
the performance of the lane follow networks. Indeed, the
attention of a driver performing a change lane should be
on what happens in the target lane. The most difficult cases
for all lane change models, including physics-based models,
involve fewer number of side agents. Our interpretation is
that the number of ways one can perform a change lane is
reduced in congested situations, simplifying the prediction
task. Furthermore, the RMSEs values vary a lot with number
of side agents in comparison to the MNLL values. The cases
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Fig. 5: RMSE and MNLL comparison of lane follow models
for motion profile prediction. Models considering more front
agents are more accurate.

with few agents have more variability, which is captured by
our system as confirmed by the MNLL values.

TABLE II: Comparison of lane change motion profile pre-
diction models on the NGSIM test set using RMSE.

# Front
# Side 0 1 2 3

0 10.05 7.54 6.45 5.13
1 9.49 7.71 6.44 5.13
2 9.50 7.05 6.15 5.06
3 8.98 8.09 6.14 5.25

TABLE III: Comparison of lane change motion profile pre-
diction models on the NGSIM test set using MNLL.

# Front
# Side 0 1 2 3

0 3.82 3.44 3.24 3.04
1 3.83 3.52 3.39 3.00
2 3.74 3.34 3.33 3.01
3 3.56 3.77 3.68 3.28

C. Qualitative Analysis

One major advantage of our system is the ability to
inspect each component, allowing to debug and understand
their contributions to the overall performance. Here, we
show how we can debug and interpret the output of the
Bayesian inference component. We also provide insight in
the advantages of combining the neural networks with a
classical trajectory generator.



(a) Time 0.0 (b) Time 0.2 (c) Time 0.4 (d) Time 0.6

Fig. 6: Consecutive calls of the Bayesian inference compo-
nent on an example of a highway exit.

We illustrate the Bayesian inference component’s process
through an example of a vehicle exiting the I-80 highway, see
Figure 6. For ease of visualisation, we use a constant velocity
model instead of the motion profile prediction networks.
We run the method with ∆t = 0.1. We only show four
observations and calls to the method at a ∆t = 0.2 to
capture a longer horizon in this illustration. The green
box represents the observed position and orientation of the
vehicle. The sequences of points starting from the vehicle
are the predicted trajectories and these are annotated with
their posterior probability. The colour of the points represent
the lateral acceleration: green is low (< 2.0), yellow is
medium (< 5.0) and red is high (> 5.0). Transparency is
proportional to the probability of trajectories. In the first
observation, the most likely behaviour is a follow lane as the
change lane and exit contain some points with high lateral
acceleration pushing their likelihood down. After a couple of
observations, the vehicle has turned towards the exit causing
the change left to be predicted as highly unlikely. Since
the weight ωφ is lower than the position terms, follow lane
is still very probable as the vehicle has not gone far from
the midline of the lane despite the relative large change in
orientation. After another pair of observations, the follow
lane becomes unlikely due to the large lateral acceleration
values in the first few points of the corresponding trajectories.
The final observation results in a large confidence in the exit
behaviour, while the other behaviour have a low probability.
The forgetting factor aids in quickly responding in the event
of a goal change as these values do not go below a minimum.

In addition to the known unpredictability of neural net-
works performance, the training data can be noisy. Due
to this combination, their output is likely to violate our
acceleration and jerk limits. Previous work [5] has also
reported that the path output of neural networks can violate
the constraints of a vehicle model. These concerns are
important since a prediction system that produces infeasible
trajectories can negatively impact the performance of the
components down the line, e.g. planning. Figure 7 shows
that the combination of neural networks with kinematic

Fig. 7: Violations of kinematic and motion profile constraints.
The ground truth trajectory in red presents high curvature and
large variations in point distances. The predicted trajectories
in blue and green (most likely) are well-formed.

and motion profile constraints can address these concerns.
Even though the ground truth trajectory is not feasible, the
prediction output is. Furthermore, the green trajectory is the
one with the highest probability.

We also performed a final analysis on the effects of the
acceleration and jerk limits. We count the number of cases
when acceleration or jerk limits have been violated, and the
magnitude of violations. The calculations are performed on
the predicted trajectory closest to the ground truth trajectory.
On a subset of the dataset made of 20k samples, we observed
193 acceleration violations and 11.6k jerk violations that
were corrected by the limits. The mean of the acceleration
violation is 2.6m/s2 and standard deviation of 2.23m/s2.
The mean of the jerk violation is 13.48m/s3 and standard
deviation of 13.86m/s3. We also noticed that the RMSE
value was at most 0.02m higher than without imposing the
limits. These statistics show the importance of these limits in
producing feasible trajectories without damaging the overall
performance of the system.

D. Runtime Analysis

The runtime of the system was measured with a desktop
PC equipped with an Intel Core i7-7800X CPU 3.50GHz
over a set of 1000 samples chosen arbitrarily from the
dataset. Our full system which runs on CPU is implemented
in C++ and Python. It takes approximately 5.5 ms per call for
each agent and we provide a breakdown of the components
cost in Table IV. Given our code structure, the time reported
for the Bayesian inference component includes the time for
generating trajectories with the pure pursuit algorithm. The
feature extraction step is currently the bottleneck as it is
Python code which can be further optimised. Training the
neural network ensemble in Tensorflow [35] requires approx-
imately 32.5 minutes while other methods report training
times of several hours using comparable machines and the
same dataset, e.g. 17.5 hours [9] or 1 day [36].

TABLE IV: Running times [ms] per component call.

Data processing Motion Profile Prediction Bayesian Inference
3.3 1.8 0.4



VI. CONCLUSIONS

We present a novel motion prediction system, based on
a modular architecture which involves both data-driven and
analytically modelled components. We demonstrate that this
achieves state-of-the-art results in the highway driving set-
ting. The proposed system covers multiple aspects of interest,
namely multi-modality, physical feasibility, motion profile
uncertainty, system maintainability and efficiency.
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