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Abstract—We propose a hybrid model for automatically ac-
quiring a policy for a complex game, which combines online
learning with mining knowledge from a corpus of human game
play. Our hypothesis is that a player that learns its policies
by combining (online) exploration with biases towards human
behaviour that’s attested in a corpus of humans playing the
game will outperform any agent that uses only one of the
knowledge sources. During game play, the agent extracts similar
moves made by players in the corpus in similar situations, and
approximates their utility alongside other possible options by
performing simulations from its current state. We implement and
assess our model in an agent playing the complex win-lose board
game Settlers of Catan, which lacks an implementation that would
challenge a human expert. The results from the preliminary set
of experiments illustrate the potential of such a joint model.

I. INTRODUCTION

This paper is concerned with the problem of finding
optimal policies for complex problems that lack any analytic
solution. Our approach is to learn from a combination of
the agent’s own exploration of the game space and from
human play. We deploy online learning strategies of [1], [2],
specifically we adapt Monte Carlo Tree Search (MCTS) so
that it reasons simultaneously from the data generated via
simulation and from human corpus data. We aim to show
that it is useful to combine online learning with knowledge of
what humans did in similar states, and that such a model will
outperform any model that uses only one of these information
sources.

Learning optimal policies by using reinforcement learning
techniques is well established, and in simple games these
approaches can find an exact solution [3]. Reinforcement
learning has also been useful for learning strategies in domains
where the environment is dynamic and partially observable.
But for complex games, where the state space is massive, it
is impractical to run the number of simulations one needs to
derive reliable policies for every state one might encounter.
A popular alternative is to use online methods to estimate
the expected utility of each of the possible actions (e.g. [4]).
However, neither of these or a combination of the two have
ever reached the level of an expert human player in complex
games, without extraneous methods for choosing among high-
level strategies such as hand-written heuristics (e.g. [5]).

The traditional learning methods are rarely trained on
general human play. Yet, many agents created to date are the
result of extensively analysing what a human would do when

faced with the same set of options. There are many techniques
for using human knowledge, including: supervised learning
through human feedback [6], modelling human opponents to
guide the sampling [7], offline learning of a policy from
expert play [8], inverse reinforcement learning from human
demonstration [9] and writing hand-crafted heuristics based
on expert advice [10] (this is also used to inform different
search algorithms [5]). These have generally increased the
level of play of the deployed agent, but either require a lot
of development work or are expensive to run. Furthermore,
some of these methods need to create abstractions over the
complex game so as to reason with a simpler game [11] and
do not take advantage of why moves are made from specific
states. In this research we aim to address these two parts of
the problem together in such a manner that a solution to one
would benefit the other and vice-versa.

Games have been used to model human behaviour in spe-
cific scenarios that relate to many daily activities (e.g. logistics,
planning or negotiations). The interaction between humans and
machines has also received increased attention, especially in
the realm of human robot interaction. In addition, there is
significant research in creating programs that would have a
more human-like approach to solving decision problems in
complex environments (e.g. Bot Turing Test the CIG Bot 2K
Competition [12]). Despite the large volumes of game data
available containing human play (e.g. network games [4]), the
state of the art methods are still combined with a large number
of hand-coded heuristics in order to raise the level of play of
Al agents.

II. RELATED WORK
A. Work on Settlers of Catan

Prior work on modelling agents that play Settlers of Catan
varies on the extent to which they rely on hand-coded heuristics
vs. machine learning, on how large a portion of the game they
aim to model, and on the empirical data that informs their
approach. The agent released with the JSettlers platform de-
veloped by [10] doesn’t use any machine learning techniques.
Instead it forms a plan based on an estimate as to how quickly
the player reaches 10 victory points (and so wins the game).
This estimate is computed from hand-coded heuristics. Another
approach treats the problem from a multi-agent perspective,
separating the original JSettlers heuristics into different agents,
each handling different aspects of the game [13].



Pfeiffer [5] presented a method that combines low-level
learning mechanisms with hand-crafted, symbolic, high-level
heuristics. The heuristics are intended to reflect a prior knowl-
edge of effective moves that a human expert player would
choose. The low-level action choices for achieving the higher
level (intermediate) goals is then learned via reinforcement
learning. The author reported that the system could develop
strategies and methods, while winning against some human
players, and also observed that the hand-coded heuristics for
choosing the high-level actions were critical to success. On the
other hand, [14] applied MCTS with only a limited amount
of domain knowledge on a simplified version of the game
(i.e. it removes the elements of imperfect information and the
agent’s ability to trade with other players). Their results show
a considerable increase in its playing strength compared to the
existing heuristics-based strategies for the game. Roelofs [15]
wrote another MCTS implementation on the same simplified
version of the game and also reported an increase in perfor-
mance compared with the heuristics-based agent. We intend to
refine this work, enhancing the performance of online learning
by combining its exploration techniques with automatically
acquired knowledge of what a human would do.

B. Similar models for learning in complex games

Silver et al. [2] describe a hybrid implementation of
an offline (learning) and an online (searching) method that
increases the performance of a Go player. In this sense, the
agent has a permanent and a transient memory, where the
memory is a set of features and parameters used to estimate Q-
values of different state—action pairs (Q(s, a)). The permanent
memory is learnt offline during millions of simulated games
and it is only modified over many moves and games. The
permanent Q-value is used as a proxy for domain knowledge
during the searching part of the algorithm, which in turn learns
a local correction to the function. This modification is used to
update the permanent memory and is erased after the action
that maximises it is executed in the real game. Overall, the
agent performed better than an Upper Confidence bounds for
Trees (UCT) based approach and it outperformed all previous
methods when combined with an alpha—beta heuristic search.
This technique is successful because, while GO is complex, it
is sufficiently simple for Q-learning to produce decent policies.
But Settlers of Catan is more complex than GO, with more
options on average and more non-determinism. Consequently,
Pfeiffer [5] has shown that a pure Q-learning strategy for
Settlers produces very poor policies, which fail to beat simple
baselines.

The game of GO is a very popular research framework
and some methods incorporate knowledge from records of
expert players. Sutskever and Nair [7] train a Convolutional
Neural Network over professional games in order to predict
how experts play the game, beating the state of the art. Other
approaches [16] use a complex combination of online learn-
ing, transient learning, expert knowledge and patterns learned
offline. Gelly et al. [17] present methods for combining offline
knowledge with online knowledge and test their performance
on the 9 x 9 Go domain. Their strongest player integrates prior
knowledge learnt offline by the RLGO program [18]: a value
function using a linear combination of binary features is learnt
offline via self-play and is used to bias the initial search of the
UCT algorithm. Neither authors train their models on human

data, but use expert games or self-play instead. Even though
learning from expert play has proven to be the most effective
[19], it is still not guaranteed that all the moves contained are
optimal. A method which can filter the moves should perform
better when applied on any of the options: self-play, expert
play or mixed human play. Furthermore, it would eliminate
the need for selecting the optimal moves before the learning
process.

The model presented in [1] improves the performance of
an agent that plays Civilisation 2 on the basis of Monte-Carlo
Search, by extracting from a manual the domain knowledge
that is relevant to the current game context and biasing the
player’s action selection policy according to the manual’s
recommended actions in those relevant states. This is done
in an online fashion by estimating the model’s parameters
using feedback from the Monte-Carlo simulations performed.
The manual can be considered a permanent memory, which is
completely trustworthy and never modified (i.e. it is reasonable
to assume that advice in an expert manual is good advice).
Following the given advice, the search algorithm is biased
towards the most similar action that can be taken from the
current game context. But a manual gives sparse advice—many
game states will bear no or very little relevance to any of the
pieces of advice given in the manual. Also, some games do not
have such detailed manuals, or if they do, they contain general
advice intended for beginners. In contrast, our approach will
mine knowledge from a corpus of actual moves expert human
players choose in particular states.

III. EXPERIMENTAL RESOURCES
A. Settlers of Catan

The domain in which we test our model is Settlers of Catan
(for a more detailed set of rules see www.catan.com). This is a
multi-player (2—6 players) board game which has won several
major awards and has been used as a platform in previous
research [10], [14], [15], [20]. This research will focus on
the core game for 4 players. It is a win—lose game: the first
player to reach 10 victory points wins the game. One obtains
victory points in a variety of ways (e.g. a settlement is worth
1 point and a city is worth 2 points). The players build roads,
settlements and cities on an island represented by the board
formed of hexagonal tiles like the one presented in Figure 1.
The tiles represent one of the five resources (Clay, Ore, Sheep,
Wheat and Wood), desert, water or ports. Each of the resource
producing tiles have an associated number between 2 and 12.
Players obtain resources via the positions their pieces occupy
on the board and dice rolls that start each turn of the game,
so the outcomes of specific actions are non-deterministic. One
needs different combinations of resources to build different
pieces (e.g. a road costs 1 clay and 1 wood). In addition to
dice rolls, players can acquire resources through trades with
the bank (at a 4:1 ratio), or with a port if they have built a
settlement or city at the port (3:1 or 2:1 ratio depending on
the port) or through negotiated trades with other players.

The game starts with each player taking turns to place 2
free settlements and 2 free roads. The starting player places
one settlement and one adjoining road, then the other players,
in a clockwise direction, do the same. The last player also
places the second settlement and road, then everyone follows



counter-clockwise until the first player has placed the second
settlement and road. Each player receives the starting resources
based on the hex types adjacent to their second settlement: one
for each hex up to a maximum of 3 resources. The method
presented in this paper is evaluated on the placement of the
second settlement during this set-up period. Our motivation for
choosing this phase of the game is the fact that it is a decisive
stage. Any player that fails to select good locations on the
board will receive fewer resources throughout the game and,
as a consequence, will find it difficult to expand to other good
locations before the other players. The order in which players
place their pieces also has an effect, as better locations are
occupied first [14].

The game contains many special actions which increase
the complexity of the game. On a dice roll of 7, any player
in possession of more than 7 resources must discard half of
them and the current player moves the robber, thus blocking
the resource production of the chosen tile. Moving the robber
also allows the current player to steal one resource at random
from one of the players with a settlement or city adjacent to the
chosen location. The unaffected agents cannot see what type of
resources were discarded or stolen, so game states are partially
observable. During a normal turn, the current player can buy a
development card with 1 wheat, 1 sheep and 1 ore. The cards
are: 14 knight cards (the owner can move the robber and steal
one resource), 5 victory points cards (one victory point for each
of them), 2 road building cards (build 2 roads for free), 2 year
of plenty cards (get 2 resources of choice) and 2 monopoly
cards (when played, the owner receives all the resources of
specific type held by everyone else). Any number of cards can
be drawn from the deck in exchange for the required resources;
however only a single card can be played per turn. Finally, two
awards, each having a value of 2 victory points, are given to
either the player with the current longest road (i.e. at least
5 road pieces linked together) or the player with the current
largest army (i.e. at least 3 knight cards played).

From a game theoretic perspective, Settlers of Catan is
a very complex game. It is symmetric as players have the
same goal and sequential as each player takes turns to execute
actions. However, the fact that other agents can make offers to
the current player breaks the turn based pattern. The players are
in a race to achieve their goal, but coalitions are very likely to
happen as the game progresses. In addition, the game contains
elements of imperfect information (not just the opponents’
player types, but also the resources that opponents possess, as
well as the unplayed development cards) and it is stochastic
(dice rolls decide the generation of resources and could decide
the following actions).

Due to the large branching factor of some of the actions
of the game (rolling dice, moving the robber and discarding)
and given the negotiation actions one must employ to gain the
necessary resources to achieve one’s goal, the game tree has an
exponential growth in time making any learning methods that
are based only on random walk infeasible. In addition to this,
the generation of the board is done by shuffling the 19 land
hexes and the 9 port hexes, so the game has a huge state space
for its possible initial states. As far as we are aware, there
is no fixed solution or always winning strategy, so a player
must adapt to the current game configuration and employ a
combination of strategies in order to be successful.

B. JSettlers

The starting point for conducting our experiments is an
open source implementation called JSettlers (www.jsettlers2.
sourceforge.net, [10]). JSettlers is a client—server system: a
server maintains the game state and passes messages between
each of the players’ clients. Clients can be human players
or computer agents. The game interface for human players
(including the board and each of the player’s information) is
shown in Figure 1. The JSettlers agent is heuristics based,
deploying only hand-crafted rules. We will call the agent that
comes with the above open source package, the original agent.
Guhe and Lascarides [20] have developed an improved sym-
bolic agent which beats the original agent. Their improvements
include a modified initial placement strategy and a different
preference function for choosing the next action; the new agent
has an increase of approximately 10% in its number of wins
when playing against original agents. We will refer to it as the
ranking agent.
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Fig. 1. JSettlers game interface

C. Game rules modifications

Previous implementations [14], [15] simplify the game by
removing the elements of imperfect information (such as a lack
of knowledge of player resources and unplayed development
cards) and do not allow trades among players. As shown in
[21], limiting the possibility of a player to trade with others
handicaps it, as trading with the bank has a poor trade ratio,
while negotiations among players would most often result in
a 1 to 1 trade from our observation of the trades executed
in our database [22]. Furthermore, changing the visibility
of each players’ resources may have an unwanted effect on
negotiations, as [21] have shown that the belief and memory
models affect both the number and the quality of trade offers.

Information such as these human preferences for trading
with each other rather than with the bank would not be so
useful for improving the agent’s decision making in a simpli-
fied version of the game. For instance, the game branching
factor is drastically reduced by performing the two mentioned
simplifications. In such a scenario, Monte Carlo Tree Search
would be able to search the game tree in greater depth and
execute multiple visits per node at lower depths, resulting in



a more accurate estimate of expected utilities from a smaller
number of simulations. [14] and [15] prune the game tree by
simplifying the game itself—no trades with other players and
perfect information. We would like to evaluate the performance
of our models on the full game, which contains the full
spectrum of strategies.

D. Human Corpus

Our human data is taken from a corpus of humans playing
Settlers in a tournament that ran for three seasons [22]. Two
of the seasons are split into different leagues based on the
participants’ previous experience and level of play. In these
leagues each player plays multiple games and a detailed
ranking system is produced. This gives us the possibility
to decide on the confidence in certain players given their
performance in the leagues, in addition to their performance
during a specific game. In other words, these can be a set
of informative features for estimating the utility of an action
attested in the corpus. One of the seasons contains 21 games
in which players of different levels are mixed together, with
each player playing a single game. The corpus consists of
59 games played on different board layouts and containing
different number of players (i.e. 2, 3 or 4 players), from a
total of 100 participants of mixed experience out of which
75% were male, 25% were female, the average age was 27
(minimum 19, maximum 54). Overall, this corpus ensures the
data we have collected contains a large variety of scenarios
with a total of approximately 14000 state—action pairs. Despite
this, the data is very sparse, and it is highly unlikely that an
exact state that is attested in the corpus will be encountered in
a future game.

IV. IMPLEMENTATION

Our main objective was to show that a model that uses
information extracted from a corpus of human play would have
an increased performance over a model that doesn’t exploit
human data and that we can use human knowledge to directly
guide the play of an agent in an online fashion. Moreover, we
want to show that relying only on the information extracted
from the human corpus is not effective: one needs the agent to
perform an online exploration of his current decision problem
to overcome the sparse data the corpus provides.

The results in [14] show that Settlers of Catan is a very
complex game and that online methods that rely completely
on random walk to search the space fail to achieve reasonable
play. They succeed only if sufficient time for running simu-
lations is provided and the game’s rules are simplified, thus
reducing the branching factor of the tree. Given that we will
be evaluating our model against a stronger baseline and that we
do not want to simplify the game, we fear that running 1000
random simulations (which results in an agent of equal strength
to the baseline in [14]) is not enough to defeat our baseline
heuristic agent or even generate a decent player to play the full
game. Due to the complexity of the game and the fact that we
are using a corpus of mixed play, we believe that this small
number of simulations will not be enough to filter the noise and
prune the bad moves extracted from the corpus. Furthermore,
we aim to show that a method which makes use of past play
to bias the online learning will reduce the need of running a
large number of simulations, which are expensive. But it is

impractical to increase the number of simulations to 10000,
which might generate an agent able to defeat the baseline and
build our model on top of this agent. Such a player could
never give a human opponent a satisfying experience, because
it would take too long to decide on each move it makes. We
were unable to find the exact number of simulations that would
result in a player of similar strength as our baseline in the
given time frame. Therefore, we decided to implement a more
controlled experiment to evaluate the benefits of mining the
human corpus, but one that does not sacrifice the complexity
of the game.

As mentioned before, we have chosen to verify our hy-
pothesis on one of the most important actions of the game
namely, the placement of the second settlement during the
initial set-up phase. All agents use the same policy for the
remainder of the real game, so we can assess the utility of
just this move following different policies. This approach also
permits testing the performance on the complete unmodified
game, as the heuristic agent handles all aspects of the game
(including trading and imperfect information), while during the
initial placement set-up everything is observable and we do not
need to modify the search algorithms.

A. Monte Carlo Tree Search

MCTS is a planning method for finding optimal solutions
that combines random sampling of the decision space with
the precision of a search tree. The algorithm can be separated
into four steps (see Figure 2): selection (starting from the root
that represents the agent’s current state and select the nodes
based on a policy until a leaf node is reached), expansion (one
or more children are added to the tree), simulation (from the
new node the game is played following a simulation policy)
and backpropagation (the result is used to update the expected
utility of every chosen node in the tree).

Selection — Expansion — Simulation » Backpropagation
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UCT is a very successful algorithm for modelling MCTS
as it has been shown to have a better action selection procedure
than e-greedy methods (in which exploration is achieved
choosing uniformly at random from the available options) and
overall better performance [23], [24]. The UCT formula is:
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where X is the value of the node represented as number of
wins out of the number of plays selected via this node, n the
number of times the parent node was tried, n; the number of



times the child node was tried and C is a constant used to
decide on the level of exploration.

MCTS in its simplest form has been successfully applied
on games of perfect information, whereas Settlers of Catan
contains hidden information, in which the agent must reason
about the relative likelihood of the hidden values to make an
optimal decision. Previous implementations simplify the game
domain as described before in order to be able to apply the
algorithm as it is. But we want to evaluate the performance of
our model on the full game, which contains the full spectrum of
strategies. The alternative is to adapt the MCTS algorithm by
extending it with: determinization (of hidden information) [25]
or Information Set Monte-Carlo Tree Search [26]. For now we
apply our approach in one of the fully observable stages of the
game—namely the initial placement—and we will implement
one of the extensions to the MCTS algorithm as future work.

B. Flat Monte-Carlo

As we have chosen to test only on one action of the
game, we want for now to avoid having MCTS (see Figure 2)
selecting actions based on how good a specific part of a
branch continuing from the current node is. We have decided
to remove the expansion part of the algorithm turning this into
a similar approach as Flat Monte-Carlo (FMC) method [4],
which samples each action uniformly at random. FMC has
proven to be very strong in the domains of Bridge [27] and
Scrabble [28]; these are however much simpler than Settlers.
We want to keep the benefits of UCT, so our method will
treat the leaves of the tree as a multi-armed bandit. Such an
approach is called Flat Upper Confidence Bounds (Flat-UCB)

[4] (see Figure 3).
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FMC has been shown to be a weak approach as it does not
allow for opponent modelling [29]. Flat-UCB with random
simulations has the same issue, because UCT is only used in
the tree level (i.e. only from the current player’s perspective),
while the other players take only random decisions during
simulations. To overcome this, we are simulating following
an e-greedy policy m; for all the players (with ¢ = 0.2),
in which an action is chosen based on the ranking heuristic
in 1 — € proportion of time and uniformly at random in the
remaining e proportion. Whitehouse et al. [30] have shown that
existing heuristics can be re-purposed inside MCTS to retain
the personality of the original agent and potentially create a
stronger player. In addition, an e-greedy policy will also allow
the model to explore the game space in more detail as the
ranking agent’s decisions are deterministic.

Finally we have chosen a fixed number of 1000 roll-outs
for the Flat-UCB method, with each roll-out terminating at
an end state of the game (i.e. the state where the first player
acquires 10 victory points). The action selected to be played

in the real game is the one that maximises X; in the UCT
formula, with C' = 1.

C. Assessing relevance

Linear function approximations can give good results in
large or continuous domains where the state space is too large
for performing the required simulations [2]. Via this process
called generalisation, reinforcement learning methods learn to
take reasonable decisions to similar states to the ones already
tried [11]. To perform such approximations, one first needs
to transform the game data into a different representation,
e.g. feature vectors. This pre-processing has proven to be a
very important step in the performance of the final systems
[31]. It involves feature selection and feature extraction. The
former is the process of creating a subset of features from
the raw data set by eliminating any irrelevant or redundant
ones. Feature extraction is a special form of dimensionality
reduction and could create new features from an existing set,
by performing some mathematical calculations. Generalisation
over binary features has been successful in many domains, e.g.
Go [2], Civilisation 2 [1], Checkers [32] and Backgammon
[33]. In general, the features were chosen manually based
on the author’s domain knowledge. However, [34] show that
a simple automatic process using a Genetic Algorithm can
greatly improve the agent’s performance.

We have chosen to represent states and actions as vectors
of numerical features. The vector representing an action is
constructed via vector difference between the vector represent-
ing the state in which the action is performed and the vector
representing the resulting state. Due to the sparsity of our
corpus data, we need a set of features that does not necessarily
contain the exact description of the state (i.e. coordinates of
pieces on the board), but rather specific characteristics or
relations (e.g. number of pieces on board, distances between
them, access to resources etc). Furthermore, it is very difficult
to transpose the actions due to parts of the game configuration
varying a lot between games (e.g. hexes on the board are
randomised in the beginning). Therefore, our features are
intended to capture the abstract properties that best represent
the current player’s state and focus on what effects his actions
may have. The feature vectors corresponding to the states
encountered in the corpus are stored alongside the game’s data
in a database for quick access.

In contrast to previous approaches, we have chosen to un-
derline the importance of similarity of both states and actions.
Therefore we will use the vector of features representing these
only to compute the relevance to the current options and use
this value as a weight when introducing prior knowledge into
the tree, while the utility is measured by running simulations.
We calculated the relevance of the states and actions by
computing their vectors’ cosine distance (where A and B are
the vectors describing the candidate states or actions):
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D. Informing the search

Having defined the two parts of the model separately, now
we will present how they are combined. A popular approach
is to have an e-greedy policy that will treat the advice given
by the corpus as optimal and sometimes choose an action uni-
formly at random. UCT has a few benefits over this approach
(see Section IV-A) and there are many developed approaches to
bias its search. [14] have chosen to seed in the nodes based on
their knowledge of Settlers of Catan and the values seeded have
been chosen from observations. This approach is dangerous
as it can affect UCT’s ability to balance exploitation of the
most promising nodes with exploration of rarely tried nodes.
[4] present various approaches for introducing prior bias in
the tree, out of which UCT-Rapid Action Value Estimation
(RAVE) performance in previous complex applications stands
out [17]. In this experiment we have chosen to seed in a value
in a similar way to the approach presented in [14], as we are
using Flat-UCB with an e-greedy simulation policy instead of
MCTS with random exploration. We are initialising the number
of plays and wins of the node.

In general, RAVE or any other form of seeding may
introduce some bias as the value of actions also depends on the
state from which they are executed. Game actions may have
the same high level description (e.g. placing a settlement), but
their effect is determined based on the state description (i.e.
description of adjacent hexes). To reduce this bias we compute
the similarity values of both states and actions and we are
averaging over the two. We decide on the nodes to seed by
using the state and action similarity value, such that a pair from
the corpus will only be used once to bias towards the most
similar pair for each decision in the tree (i.e. action selection).
In contrast to [17], who use linear function approximation that
generalises to the whole space of the game, we have access to
a corpus of exact actions taken in specific states.

The resulting value computed by the cosine distance is
in the range [—1,1], where 1 suggests that the candidates
are the same and —1 suggests they are opposites. In general,
the vectors describing the states are in positive space, so the
cosine distance is in [0, 1]. Action vectors are the result of the
difference between the resulting state and the initial state, so
these could contain negative values for different actions of the
game. We compute the similarity of the states (R(s, s’), where
s is the state encountered in the real game and s’ is the state
encountered in the corpus) and actions (R(a,a’), where a is
one of the possible actions from the real game and a’ is the
action taken in the corpus) separately, so the final relevance
value of a pair is the average of the two values, and it is
bounded in [—1,1] (see Equation 3). This covers the scenario
in which an action encountered in the corpus may be very
similar to the current possible action, but it was executed from
a very dissimilar state. Let’s assume for now that the pairs
in the database have already been evaluated and each have a
utility value U (s, a’). Then the value of the pair in relation to
the current state and action option, would be this utility value
weighted with the relevance value (see Equation 4).

R(s,s") + R(a,d’)
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Finally, we need to take into account that multiple pairs
from the corpus may suggest the same action as the best next
move. As a result, the estimated (Q)(s, a) value is averaged over
all suggestions:
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The current experiment only treats the placement of a free
settlement, which is always a gain. So the cosine distance of
the actions’ vectors is also bounded in [0, 1] and so is the
final relevance value from Equation 3. For now, we do not
estimate the utility of the state—action pairs gathered in the
corpus; instead, we trust the decision making of the person
who played the action. To reflect this assumption, the utility
from Equation 4 is initialised to: U(s’,a’) = 1. Even though
our database contains play from novices and experts, we have
observed that an average Settlers player will win around 50%
of the games when playing against 3 original agents (also
confirmed by [10]). So the assumption that humans are better
at choosing locations for the initial placement than the heuristic
agent is naive, but largely reasonable.

__ Finally, we introduce the information in the tree by setting
X, = Q(s,a) (as the value is in the range [0, 1]) and n; = 10
in Equation 1. This means that the value of the node is equal
to Q(s,a), after 10 visits. Note that the UCT algorithm will
try the nodes that were not initialised at least once before the
seeded value will influence the search. We want to underline
that the value of each state—action pair from the corpus is used
only once to influence the most similar pair from the current
options. The result is that we are not seeding all the nodes in
the tree with a value, but rather we bias the search towards
a smaller part of the tree deemed good by the information
extracted from the corpus.

V. RESULTS AND ANALYSIS

We measure the performance of a modified agent by
running simulations of 10000 games of 4 players; one of
the players is the modified agent and he plays 3 baseline
agents. Therefore, a player that is of equal strength to the
baseline agent would win 25% of the games. We performed
Z-test to test the significance of win rates against the above
null hypothesis and we chose a threshold p < 0.01, so
results between 24-26% are not considered significant. The
need of such a large number of simulations is due to the
degree of non-determinism in the game (i.e. dice rolls and
the board configuration being randomised at the beginning of
each game). Therefore, we want to avoid the risk of a non-
reproducible results, given the vagaries of the outcomes of
small number of trials.

We have run our experiments using as an upper-bound
baseline the ranking agent briefly presented in Section III-B:
i.e. an agent that plays according to a set of sophisticated, but
hand-crafted rules. Results against the lower-bound baseline
(random player) are not reported in the table: any of the
presented agents win 99% of the games against a random
agent. The modified agent was replaced with different versions



of the Flat-UCB model with the intention to test each addition
on its own and then assess the joint model. Furthermore, we
explore the effects of biasing the search with the evaluation
performed by the ranking agent. Therefore we have the fol-
lowing modified agents:

1. Flat-UCB without any prior knowledge;

2.  Flat-UCB seeded with prior information extracted
from the ranking heuristics;

Flat-UCB seeded with the Corpus suggested policy;

4.  An agent that follows the Corpus suggested policies
without performing simulations;

Agent 1 searches the options following the UCT formula
(see Equation 1) and chooses the action that yielded the best
result during simulations to play in the real game. This player
doesn’t use any prior information. Agent 4 builds the tree
and seeds in the values computed from the corpus. It doesn’t
perform any simulations, but just chooses the action with
the highest value. Agent 3 combines these two approaches.
Agent 2 computes the values of actions following the ranking
heuristic agent estimates and only the 5 nodes corresponding
to the best 5 actions are initialised; the tree is seeded in the
same manner as for the other two players that make use of
prior knowledge. All agents, aside from the last one, perform
simulations using the e-greedy policy described in the previous
section, where the optimal move is chosen by the ranking
heuristic. The differences apply only on one action of the game
(i.e. the placement of the second settlement during the initial
set up), while the remainder of the game is played by each
agent as if they were ranking agents.

TABLE 1. RESULTS
Agent type Win percentage | Number of games
Ranking (baseline) 25% 10000
Flat-UCB 28.74% 10000
Flat-UCB seeded with ranking heuristics 28.48% 10000
Flat-UCB seeded with Corpus 30.43% 10000
Corpus 19.11% 10000

Table I contains the performance in terms of win per-
centage of each of these agents over 10000 games, in which
the other 3 players are baseline agents. As expected, Flat-
UCB shows a large increase in win rate (3.7%) over the
baseline and informing the search with a policy that averages
over the related advice from the corpus further increases the
performance by another 1.7%. These results illustrate the po-
tential value of mining human knowledge for learning optimal
strategies in complex domains. The increase in performance
may seem small, however the model only tests this on one
action of the game. Furthermore, the strong simulation policy
could also be a cause for such a large increase in performance
resulting from applying the Flat-UCB method compared to the
one resulting from extending it with the seeding mechanism.
The default random policy or a mixture with an opponent
modelling technique should generalise better and show exactly
how beneficial the corpus bias is. Unsurprisingly, the agent
that doesn’t run any simulations performs poorly, decreasing
the win rate by 6%. The corpus data is too sparse to be the
only source of information for guiding the decision making.
The method for assessing the relevance presented above is an
approximation and averaging over the given advice only partly

filters the noise. Without any roll-outs this is not enough. In
future work, we will test this hypothesis by following the same
policy throughout the game. This will be made possible once
we apply this model to all action types and inform MCTS
instead of Flat-UCB.

A. Note on performance

We have tested the performance of the model on a typical
desktop machine (Intel-IS hyper-threaded processor with 4GB
of RAM). The JSettlers environment runs 10000 games with 4
ranking players in approximately 1 hour on a typical desktop
machine. Running the 1000 simulations required for the Flat-
UCB method with the JSettlers environment takes 5 minutes,
which is too slow for an online method. The seeding method
requires less than a second to finish and can be further
improved. The SmartSettlers model presented in [14] takes
around 12 seconds to run 10000 random simulations, which
is still too slow for an online method. However, combining
1000 simulations on the SmartSettlers model with the current
seeding method would result in approximately 2 seconds
required for each decision. We intend to build our approach on
top of the SmartSettlers model as such short period of times
would also be acceptable for the human—AI experiments which
we intend to run in the future.

VI. CONCLUSION

We have presented a method that combines knowledge
extracted from a corpus of human play with simulations in a
Monte Carlo Tree Search implementation for Settlers of Catan.
This is a proof of concept which yields promising results
when compared against an agent that relies on only one of
the knowledge sources or relies on exploration seeded with
hand-coded heuristics for estimating promising portions of the
game tree. Furthermore, it exceeds the performance of the
currently best symbolic agent for the game, an implementation
which was built and whose heuristics were improved over
many years.

In the future we aim to show that guiding the Monte
Carlo Tree Search method with information taken from the
human corpus for each possible action in the game will
overcome some of the issues encountered by random search.
To achieve this, we need to develop an agent that is capable
of handling both the remaining actions (i.e. trading) and the
hidden information on its opponent’s hands, as the data in
our corpus has been collected by observing humans playing
the unsimplified game. We would also like to pre-compute the
utility of state—action pairs as we believe this will help filter
the noise out before running any simulations. Finally, we aim
to assess different methods of introducing prior knowledge to
the search (e.g. RAVE) as well as their benefits over the current
approach. Once we have a model which plays the full game,
we will evaluate our agents against human expert players in
addition to the method presented.
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