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Abstract

We present a suite of techniques for extending the Partially
Observable Monte Carlo Planning algorithm to handle com-
plex multi-agent games. We design the planning algorithm to
exploit the inherent structure of the game. When game rules
naturally cluster the actions into sets called types, these can
be leveraged to extract characteristics and high-level strate-
gies from a sparse corpus of human play. Another key insight
is to account for action legality both when extracting policies
from game play and when these are used to inform the for-
ward sampling method. We evaluate our algorithm against
other baselines and versus ablated versions of itself in the
well-known board game Settlers of Catan.

Introduction
This paper is concerned with learning to play highly com-
plex games, where exact methods aren’t feasible and online
planning methods perform better. Even in this case, it is well
known that time forbids sufficient search of the space, and
that random sampling is not informative enough. There are a
multitude of methods to extract policies from existing game-
play which can then be used to inform the sampling method:
for instance, inverse reinforcement learning (Ng and Russell
2000), apprenticeship learning (Abbeel and Ng 2004), learn-
ing by demonstration (Argall and others 2009), learning to
predict expert play via supervised learning (Maddison and
others 2015) and reinforcement learning bootstrapped with
policies extracted via supervised learning (Silver and others
2016). However, these assume that previous play is gener-
ated by experts, and/or have access to massive data sets or
computational budget. Our focus is to extract policies from
low quantities of mixed previous play in a very challeng-
ing environment: Settlers of Catan. Due to its challenges,
previous work relied on complicated hand-crafted heuris-
tics (Thomas 2004; Pfeiffer 2003) or focused only on por-
tions of this environment (Szita, Chaslot, and Spronck 2010;
Keizer and others 2017; Dobre and Lascarides 2017b).

In this paper, we present the first purely machine learning
agent that can address the complete set of game rules, in-
cluding trading and partial observability. The success of our
model comes from two features. First, we exploit the game
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rules to impose structure on the learning task, enabling the
agent to find lucrative parts of the game tree in the time avail-
able. Second, we mine a corpus of human game play to es-
timate which parts of the game tree to explore during online
learning. In a major contrast from prior work, we show that
learning from human data is beneficial even if the amount
and quality of the data available is very low—in our case,
we had only 60 games rather than millions. Nevertheless,
a set of high-level preferences that are extracted from this
data provide useful information in significantly improving
the planning agent. Combining preferences with a modified
version of POMCP resulted in the state of the art perfor-
mance on this domain. Our agent can easily defeat previ-
ous implementations as well as a version of itself that uses a
non-linear policy extracted via standard supervised learning
methods. Furthermore, our agent required a fraction of the
decision time compared to the latter. Finally, our ablation
studies indicate that our agent heavily relies on the prefer-
ences extracted from the corpus.

Related work
Research on improving Monte Carlo Tree Search (MCTS)
is very active. Work that focuses on the curse of history
is related to the idea of clustering actions into types. The
most popular methods in reinforcement learning that address
this issue are the hierarchical methods, where Macro actions
are defined e.g. (Dietterich 2000; Vien and Toussaint 2015).
Macro actions impose a structure on the task which limits
the possible policies that the agent can learn. To avoid this,
we utilise the approach of Dobre and Lascarides 2017b, who
cluster the actions into types based on the game rules. We
further extend this work by also modifying the tree phase of
MCTS and by extracting preferences from a corpus of mixed
play. Dobre and Lascarides 2017b offer a detailed compari-
son to similar methods of improving the rollouts or the tree
phase of MCTS. Other related work can be found in stan-
dard graph or tree search methods (Xie and others 2014;
Lelis, Zilles, and Holte 2013), however these approaches
cluster the nodes instead of the actions (edges). In real-time
strategy games, Lelis 2017 partitions units controlled by the
player instead of actions.

Clustering actions allows us to introduce preferences ex-
tracted from a very limited number of games. Biasing MCTS
with knowledge that’s mined from a corpus of game play is



a well explored path for addressing both the curse of history
and the curse of dimensionality. Both tree and rollout poli-
cies can be improved via: initialising the action values based
on common knowledge (Szita, Chaslot, and Spronck 2010;
Silver and Veness 2010), using statistics from previous
runs (Gelly and Silver 2007), combining with an oppo-
nent model learned via fictitious play (Heinrich and Silver
2015), weighting with a move-prediction model trained on a
database of expert games (Graf and Platzner 2016) or with
a policy trained via reinforcement learning (Silver and oth-
ers 2016), or directly applying existing heuristics (Cowling,
Ward, and Powley 2012; Dobre and Lascarides 2015).

A related extension is that of constraining the action space
during rollouts (Subramanian and others 2016), but their op-
tions were generated via crowdsourcing and their constraints
following a detailed manual analysis of varied human play.
The most related work is that of Bitan and Kraus 2017, who
interpolate with a probability distribution that describes gen-
eral preferences from a database of gameplay over their own
abstraction of the action space. There is also some work
in combining preference learning with reinforcement learn-
ing (Fürnkranz and others 2012). None of the previous ap-
proaches integrate preferences conditional on action legality
or combine with a type-based system.

Partial observability is a rarely tackled aspect due to its
inherent difficulty. The most successful methods applied to
POMDP’s are based on sampling (Kurniawati, Hsu, and Lee
2008; Silver and Veness 2010) or by planning in abstract rep-
resentation of the belief (Kaelbling and Lozano-Prez 2013).
In the MCTS literature, partial observability can be handled
by “determinizing” the world (Bjarnason, Fern, and Tade-
palli 2009), combining the results in a single tree by em-
ploying information sets (Cowling, Powley, and Whitehouse
2012) or by attempting to plan in the belief space (e.g. in
Phantom games, Wang et al. 2015). Cowling, Powley, and
Whitehouse 2012 present several methods for integrating
opponents’ beliefs by building the tree for each player, i.e. a
multiple observer implementation. This is very related to the
work in POMDPs that allow for reasoning about nested be-
liefs (Gmytrasiewicz and Doshi 2005). Even though Settlers
of Catan is a multi-agent environment, we only implement
a single observer algorithm and we leave such extensions to
future work. We want to briefly mention that we do not at-
tempt to learn or improve an existing model of the game as
in Bayesian model-based reinforcement learning, where the
agent may be uncertain of the environment dynamics (e.g.
Guez, Silver, and Dayan 2013).

Settlers of Catan
Settlers of Catan (SoC for short) is a 4 player win-lose game.
The rules of the game can be found at www.catan.com.
Table 1 shows that it exhibits quite different features from
Go, which has been extensively used as a benchmark for
learning agents (e.g. Silver and others 2016, 2017). The fig-
ures in the table are determined by the game rules, except
for the depth and branching factors which are estimated
via game simulations where the agents are the state of the
art rule-based agents. The table shows that SoC presents
a more challenging problem than Go. Even though both

Property GO SoC
Incomplete Information Yes Yes
Stochastic No Yes
Partial Observable Moves No Yes
Imperfect Information No Yes
Avg. depth 250 250
Branching factor 250 65
Initial state space 1 ≈ 1.2 ∗ 1015

Action Space 361 1882
Types of actions 2 8
Number of players 2 4
Number of actions per turn 1 ≥ 2

Table 1: Comparison of Go and SoC. The depth of SoC was
computed by simulating games with the heuristics agents or
via random sampling.

have incomplete information (i.e. opponent types are un-
known), SoC’s state and action space is much larger, and
it features imperfect information (i.e. opponents’ resources
and development cards are hidden) and chance events (i.e.
it is stochastic). Further, while SoC has a smaller branch-
ing factor than Go, its depth becomes two orders of mag-
nitude greater (11715 average depth) if random sampling is
used. This massive depth highlights that random sampling is
not appropriate in this domain. Finally, a player can execute
multiple actions per turn (minimum of 2, i.e. roll dice fol-
lowed by end turn) so deciding when to end your turn has a
high strategic importance.

Tracking Belief in Settlers of Catan
Popular methods for tracking an agent’s beliefs include par-
ticle filters (Silver and Veness 2010), Dynamic Bayesian
Networks (Russell and Norvig 2009), to abstract the game
representation to only relevant aspects (Kaelbling and
Lozano-Prez 2013) or to approximate the POMDP with
a factored representation (Paquet, Tobin, and Chaib-draa
2005; Williams 2005). We chose to use the latter, since a
factored representation in SoC can be easily implemented
just by following the game rules and without making any
strong independence assumptions. All the planning agents
described here will use a Factored POMDP (FPOMDP).

In a FPOMDP, the belief is not represented as
a distribution over a single state variable. Instead
states are represented with M random variables s =
X1 = x1, . . . , XM = xM and a belief is represented as
a joint probability distribution over these variables b =
P (X1, . . . , XM ). One approach is to assume complete inde-
pendence b =

∏M
k P (Xk) (Paquet, Tobin, and Chaib-draa

2005), but this may not work very well in domains such
as ours since sets of variables determine actions’ legality
as well as their effects. In line with our general approach
of exploiting structure imposed by game rules during learn-
ing, our independence assumptions are informed by these
rules. For instance, the players’ resources and development
cards can be tracked independently for the following rea-
sons: (a) the partially observable effects of actions modify



either what resources a player has (i.e. stealing and discard-
ing) or what development cards a player has (i.e. buying a
development card), and (b) action legality depends on ei-
ther what resources or what development cards are owned.
On the other hand, we keep track of the joint distribution of
which resources each player has (this allows us to accurately
model the effects of stealing and discarding).

Since this is a 4-player game, tracking a belief over a
complete description of the state would result in an explo-
sion of possible states given the large number of combi-
nations between each possible resource hand and develop-
ment hand for each player. But, we only require the infor-
mation for the current player to reason over the next legal
moves. Therefore we track each player’s resource hands in-
dividually and we make the assumption that these are inde-
pendent. Given that players steal resources from each other,
this is clearly a relaxed implementation as it will create a
small number of additional impossible states. Nonetheless,
this factored belief model provides a cheap belief transition
function b′ = τ(b, a, o). A more detailed description of the
belief model can be found in Dobre 2018. This approach is
specific to SoC, but similar approximate representations can
be easily designed for most complex domains.

As Paquet, Tobin, and Chaib-draa (2005) observe, there
are three major benefits in factorising the belief in this way:
belief update is faster, enumerating possible legal actions is
also faster and belief representation requires a lower mem-
ory. The first and the second benefits are mostly due to how
these only target specific portions of the state as well as spe-
cific players. The latter is true because (as with Bayes Nets)
the factored approach offers a highly compact representation
of the joint probability distribution over all possible states.

Partially Observable Monte Carlo Planning
Partially Observable Monte Carlo Planning (POMCP) (Sil-
ver and Veness 2010) was originally proposed as an on-
line planning method in POMDPs. (Silver and Veness 2010)
have applied POMCP to single-player environments; so un-
like SoC the agent doesn’t need to reason over the other
agents’ actions. In SoC, we need to reason over what op-
ponents can and cannot do in the current belief state, be-
cause a failed action would inform the other players of what
resources or development cards the agent doesn’t have. Fol-
lowing the game rules, the observable game model provides
a function, II(s, a) = {0, 1}, that we use to mask illegal
actions depending on the state sampled at the root node.

Trading creates cycles that are dificult to manage with ran-
dom rollouts. To address this issue we exploit typed rollouts
(Dobre and Lascarides 2017b). This approach assumes the
actions can be clustered into types, e.g. road building is a
different type of action to city building. Sampling then pro-
ceeds in two steps. First an action type is selected from a
list of types T with a policy πt(T ). Then a specific action
is sampled from the set of actions At of chosen type t, with
a policy πa(At)—for instance, if sampling chose the action
type of road building, you now sample where on the board
to build it. These lists are provided by the game model. In
this paper, we’ll show that estimating the policy πt from a

corpus of human play performs better than assuming uni-
form sampling. In the original POMCP algorithm, rollouts
are performed with a hand-crafted policy defined in terms
of the history ht consisting of action and observation pairs
ht =< (a1, o1), (a2, o2), . . . , (at, ot) >. However, our poli-
cies (whether mined from the human corpus or made uni-
form) don’t require hand-crafting nor the dependence on
history. For us, the rollouts are performed in the observable
game.

Negotiations also affect the selection step of the original
algorithm since it represents nodes in the tree using the his-
tory. For example, the same belief state can be encountered
following different trajectories and therefore the histories
are different. This is caused by players exchanging resources
that the belief model was already certain they have. The
most simple degenerate case is where two opposite trades
are made one after another and the game is back in the origi-
nal belief state. Therefore, representing nodes with histories
is not efficient as the algorithm will duplicate a lot of effort
to relearn the best actions. We overcome this by representing
a belief state node with a set of features for both the observ-
able state and the belief. The features are computed using
an abstraction function ω(b, s) and the belief features are
bounds for the values of the belief model factors. This rep-
resentation has proven sufficient to ensure the uniqueness of
the belief states and share statistics between nodes.

The obvious downside is that ω(b, s) requires updating the
belief as we traverse the tree. But we only need to perform
this update during the selection phase of the algorithm since
the rollouts are performed in the observable game. As we
will show later, the time required for running the algorithm
can be tolerated by a human player. The other improvements
presented in this paper do not depend on how an agent’s be-
lief is tracked.

Similar to previous work on Go, we only update with the
rewards received at the end of the game, 0 for a loss and 1
for a win, and we do not discount these (the backpropagate
function is omitted for the sake of space). A further required
clarification is that our game modelG can provide a list of all
possible actions given a belief b. This is just an optimisation
to reduce the memory footprint; alternatively one can return
all actions that can be executed in the game. Our modified
POMCP method is described in Algorithm 1.

Combining with human preferences
Our end goal is to combine the planning method with a
method that extracts a policy from a human corpus. The cor-
pus contains mixed play and is made of a total of 60 games
(Afantenos and others 2012). These games have been col-
lected by an omniscient server which had access to the exact
state description s. We do not have access to the players’
beliefs, however we will look into estimating these beliefs
and integrating this estimation in future work. One obvious
way to improve the rollouts is by improving the policy used
to select action types πt(T ) over the standard uniform pol-
icy. This can be achieved by learning a preference distribu-
tion over action types from the game play stored in the cor-
pus. The simplest approach is to estimate this distribution
via Maximum Likelihood Estimation (MLE) which counts



Function Search(ω, G, Tree):
create root node n
while within budget do

s ∼ b
n,s,b← TreePolicy(s, b, ω, n, G, Tree)
s← Expand(s, b, n, G)
r ← Rollout(s, G)
Backpropagate(r, Tree)

end
a← arg maxal

Q(ω(b, s), al)
return a;

Function TreePolicy(s, b, ω, n, G, Tree):
while n is expanded node do

a←
arg maxal

Q(ω(b, s), al) + C
√

logN(ω(b,s))
N(ω(b,s),al)

where al ∈ {a| II(s, a) = 1}
s,o← G.step(s, a)
b← τ(b, a, o)
n← Tree(ω(b, s)) # also creates new node

end
return n,s,b

Function Rollout(s, G):
while s is non-terminal do

T ← G.action types(s)
t ∼ πt(T )
At ← G.actions(s, t)
a ∼ πa(At))
s← G.step(s, a) # o is not needed in rollouts

end
return G.reward(s)

Function Expand(s, b, n, G):
A← G.possible actions(b)
initialise statistics in n for actions A
select random action a legal in s
s← G.step(s, a) # o is not needed here
return s

Algorithm 1: Modified POMCP

the number of times an action type was selected in the cor-
pus over the number of times this action type was legal. We
use a function C to represent the counts, a function type(a)
to represent the type of the chosen action a and a function
legal(t) to indicate that a type t is legal (i.e. there is at least
one legal action of type t) or not (there are no legal actions
of type t):

πu
t (T ) = P (T = t) ≈ C(type(a) = t)

C(legal(t) = True)
(1)

Ideally, one would also like to condition on the state rep-
resentation, such that this preference would resemble an ac-
tion value function Q(s, a). Using a tabular representation
is impossible in a game of SoC’s size when we have ac-
cess to such a small set of samples. However, we exploit
action legality to reduce the effects of the extremely sparse
data. Specifically, we condition on the set of n legal action
types in the current state s as shown in Equation 2, where
the function Γ(s) = {legal(t1), legal(t2), . . . , legal(tn)}

represents this set of legal types.

πc
t (T,Γ(s)) = P (T = t|Γ(s)) ≈ C(type(a) = t)

C(Γ(s))
(2)

This approach captures the fact that a human player’s
policy includes preferences of executing certain types over
other types when both options are legal. The unconditioned
distribution may be very skewed towards the more common
types, which are more likely to be legal and more likely to be
executed in a game. Such a skewed distribution will not re-
flect the fact that certain types that are known to be good are
less likely to be encountered in a game. A simple example
in SoC would be to consider how often the player selected
to build something over trading when both options are avail-
able. Trading is a means to acquire the requirements for ex-
ecuting other actions which in turn will get the player closer
to winning the game. The conditioned distribution encapsu-
lates these preferences as well as others such as preferences
(or indifference) of building settlements over building cities.

Despite the fact that the action type space is small, we
still do not have enough examples to learn a good estimation
for each possible condition. Therefore we learn both the un-
conditioned and the conditioned policies and when we en-
counter an unseen condition or we do not have any counts of
the action being selected when the conditioning is true, we
fall back to the unconditioned case. We have not explored
any smoothing strategies (other than the backoff strategy just
given) to account for fewer or no counts for certain types.
Our data is sufficient to at least have some counts for ev-
ery type in the unconditioned policy. We will refer to the 3
different implementations as:

• uniform which uses the typed rollouts with a uniform pol-
icy over types πt(T );

• unconditioned which uses the typed rollouts with the pol-
icy over types πu

t (T ) learned using Equation 1;

• conditioned which uses the typed rollouts with the pol-
icy over types πc

t (T,Γ(s)) learned using Equation 2, and
falling back to πu

t (T ) from Equation 1 when the condition
was not encountered in the corpus (i.e. C(Γ(s)) = 0).

Illiciting user preferences is known to be very useful in
decision making and a very popular method for represent-
ing them is a Conditional Preference Net (CP-Net) (Boutilier
and others 2004). Simple preferences can be represented as:
a � b (a is strictly preferred over b), a � b (a is equally
or more preferred to b) or a ∼ b (the agent is indifferent to
either a or b). CP-Nets are graphs that can represent condi-
tional preferences of the form a : b � c (if a is true then
the agent prefers b over c). The conditioned implementation
provides a distribution over a preference ordering similar to
the output of a Probabilistic CP-Nets (PCP-Net) (Bigot and
others 2013). The fallback strategy πu

t provides preferences
of the form a � ¬a (agent prefers executing action a over
not executing action a), while πc

t provides preferences of the
form ab : c � ¬c (if a and b are also legal, then the agent
prefers doing c over the other actions). The benefits of PCP-
Nets is that they account for possible noisy preferences or



when the whole set of variables that affect the user’s pref-
erences is unknown. In our case, a probabilistic representa-
tion accounts for the fact that there are multiple players that
generated the data or these players could have employed a
mixed strategy. Their preferences are collapsed to a single
preference representation for a standard player.

We also use the 3 implementations to bias search in the
tree phase of the algorithm. We extend the PUCT vari-
ant used in alphaGo (Silver and others 2016) to bias the
search with these policies (see Equation 3). First of all we
adapt the formula to use belief states (with a minor abuse
of notation, we replace ω(b, s) with b). Secondly, we only
consider the legal actions a and a′. Finally, we compute
P (s, a) = P (a|type(a) = t) = P (T=t)

N(t) , where N(t) is
the number of legal actions of type t and P (T = t) is com-
puted using one of the policies extracted via MLE. Here, s is
the state sampled by POMCP at the root node. These distri-
butions can get very peaked so to avoid aggressive pruning
in the tree phase, we increase the temperature of each proba-
bility before normalising the distribution in order to smooth
it. We will refer to the agent that only informs the tree phase
with the conditioned type distribution as POMCP-TS (Type
Selection). Our strongest agent uses the conditioned policy
to bias both the tree phase and the rollout phase of POMCP.
We refer to this agent simply as POMCP-TS-CR (Condi-
tioned typed Rollouts). As a side note, we found that the
PUCT policy performs better than the standard UCT even
with a uniform distribution over the legal actions. So we use
the PUCT policy even for the standard POMCP agent.

PUCT (b, a) = Q(b, a) + C · P (s, a)

√∑
a′ 6=aN(b, a′)

1 +N(b, a)
(3)

Non-linear move prediction
We compare the above MLE method for extracting pref-
erences against a non-linear function approximation that
learns a policy from the same data (Dobre and Lascarides
2017a). They train a Deep Neural Network (DNN) in a su-
pervised manner, using hand-picked features and only the
observable parts of the states to make their estimates from
the sparse data. So the NN estimates a policy given the be-
lief of an agent which ignores all the unknowns: πNN (b) =
P (a|b). We adapt the PUCT equation to use this policy by
setting P (b, a) = πNN (b) (see Equation 4). In addition, we
added a normalisation term µ = 1∑

a II(s,a)P (b,a)
since the

masking performed to account for illegal actions given the
sampled state s would cause

∑
a P (b, a) 6= 1. This has a

negative impact on the exploitation-exploration trade-off of
the standard PUCT algorithm and we found that normalis-
ing resulted in a 10% absolute increase in the win rate of
this agent. The value of each possible action is computed
only once, during the expansion step of the algorithm. As
with the MLE extracted policies, the output distribution is
quite peaked so we increase the temperature of the softmax
output layer to avoid prunning the game tree. The agent that
informs the tree search of POMCP with the NN prediction

while the rollouts are uniform typed, is known as POMCP-
NN. We only use the DNN during the selection phase, since
it is too expensive to apply it in the rollouts.

PUCT (b, a) = Q(b, a) +C ·µ ·P (b, a)

√∑
a′ 6=aN(b, a′)

1 +N(b, a)
(4)

Results
The performance of an agent is measured by running 2000
games between 4 players: one of the players is the (mod-
ified) agent we are evaluating and the other 3 are baseline
agents (all of the same type). So, a player that is of equal
strength to the baseline agent would win 25% of the games.
We tested the significance of win rates against this null hy-
pothesis using the z-test and a threshold p < 0.01. This
makes any win rate between 22.5-27.5% not significantly
different from the null hypothesis (i.e. a win rate of 25%).
Running several simulations in an evaluation is necessary
because of the stochastic nature of the game: even a weak
player can get lucky! To avoid situations where the modified
agent has a successful strategy only because it focuses on as-
pects of the game that are ignored by the baseline agent, we
also evaluate the performance of the baseline agent versus 3
of the modified agents during the tournament experiment.

The first baseline agent is the Stac agent (Guhe and Las-
carides 2014): this is a hand-coded decision tree, and at
the time was the state of the art player for the full version
of SoC. We will then evaluate the two preference extrac-
tion methods versus a uniform bias by running experiments
where each agent is the baseline. Finally, we evaluate our
POMCP-TS-CR agent versus ablated versions of itself and
versus POMCP-NN in a tournament style experiment. Even
though Stac proved challenging for human players (Keizer
and others 2017), its performance was under 22.5% win rate
versus against all our planning agents except for one (to be
discussed shortly). So we do not include these results. All
experiments were run on a cluster of CPU machines with 4
cores: the 4 threads were shared with the NN prediction step
in POMCP-NN. We also limited trading to 3 offers per turn
for all agents (to do more would annoy human opponents).

We first focus on the performance of the POMCP agent
compared the POMCP-TS-CR agent versus 3 Stac agents.
This experiment shows how the algorithm scales with the
number of planning iterations. The results in Table 3 indicate
that the bias from the MLE trained policies is useful even if
the algorithm is allowed to perform a large number of iter-
ations. Our POMCP-TS-CR agent performs better than an
uninformed POMCP agent that runs 2 times more iterations.
Increasing the number of iterations makes it impractical to
run all our experiments, so we have capped the number of it-
erations allowed to 10k in the remaining experiments. Since
random is too weak of a baseline, we have tuned the param-
eters of all planning agents versus the Stac agents, before
pitching them against each other. The best exploration pa-
rameter C for an uninformed POMCP is 0.5, while for any
biased agent that uses PUCT as selection policy is 4.



Modified Baseline
Stac POMCP POMCP-NN POMCP-TS POMCP-TS-CR

POMCP 33.45% – 19.65% 22.05% 31.50%
POMCP-NN 34.89% 30.69% – 24.80% 24.70%
POMCP-TS 40.56% 29.53% 24.82% – 24.71%
POMCP-TS-CR 40.70% 47.50% 33.30% 30.73% –

Table 2: Agents’ performances in a tournament style evaluation.

Agent 10k 20k 30k 40k
POMCP 33.45% 42.23% 44.5% 47.94%

POMCP-TS-CR 40.70% 49.00% 52.65% 53.65%

Table 3: Win rates of POMCP and POMCP-TS-CR agents
against 3 Stac agents, while varying the number of iterations.

In Table 4, we illustrate the benefits of conditioning the
typed policy on the type legality. The modified agents are
specified on the first column and each row contains their
performance versus 3 baseline agents labelled on the sec-
ond row (e.g. POMCP with conditioned typed rollouts wins
34.75% of the games when all opponents are Stac). One
POMCP agent with rollouts using the conditioned type dis-
tribution to sample action types can easily defeat any of the
other agents, while POMCP with the unconditioned type dis-
tribution is unable to even defeat the Stac agent (25.63%).
Interestingly, an agent that uses a uniform distribution is
able to win over 25% of the games versus 3 agents that
sample the action types from the conditioned distribution.
Even though the 27.19% win rate is not significantly better,
it illustrates why we also need to evaluate the performance
of baseline agents versus the modified agents. Despite this
result, an agent using the conditioned distribution is better
since it wins more than 27.19% (i.e. 32.10% win rate) ver-
sus 3 agents using the uniform distribution.

Modified Baseline
Stac unif. uncond. cond.

unif. 33.45% – 22.25% 27.19%
uncond. 25.63% 23.55% – 17.25%
condit. 34.75% 32.10% 34.80% –

Table 4: Win rate of the POMCP agents while varying the
distribution over types used in the rollout phase.

We have also performed experiments with informing the
tree phase of POMCP with the three different type distri-
butions (uniform, unconditioned and conditioned), but we
do not include a table due to space limitations (see Dobre
2018 for details). We observed that the unconditioned and
the conditioned distributions have comparable results ver-
sus Stac (≈ 40% win rate) and versus POMCP (≈ 29% win
rate), while pitching the two agents versus each other pro-
duced win rates that were not significantly different to the
baseline performance (i.e. differences were ± 0.5%). Stac
or POMCP were unable to defeat either improvement. Com-
paring with Table 4, informing the tree phase resulted in
better performance versus the Stac agent, while informing

the rollout phase resulted in a better performance against the
POMCP agent. So both methods have their merits.

To evaluate which of our agents is the best one, we per-
formed a set of experiments where each agent was the mod-
ified agent (see Table 2). POMCP-TS-CR can easily de-
feat 3 opponents of any other agent type (see performance
on bottom row). Interestingly, POMCP is able to defeat 3
POMCP-TS-CR agents, but it is winning fewer games in to-
tal (31.50% compared to 47.50%) and it has a weaker perfor-
mance against the other agents. Another unexpected result
is that the performance of seeding with the type distribution
(POMCP-TS) is comparable to seeding with a Neural Net-
work (POMCP-NN). POMCP-NN requires 3.3 seconds on
average to take a decision, while a standard POMCP agent
requires only 2.1 seconds on average. Informing POMCP
with types in either rollouts or tree phase of the algorithm
slightly increases this average to 2.2 seconds. So this agent
has a comparable performance while it requires 2 thirds of
computation time. Finally, informing both stages of the al-
gorithm has proven fruitful since POMCP-TS-CR is able to
defeat 3 ablated versions of itself (30.73% versus POMCP-
TS), while the ablated version is unable to achieve a per-
formance significantly different to 25% win rate versus 3
POMCP-TS-CR agents.

Future work and Conclusion
We presented an extension to POMCP to address the chal-
lenges of complex games. We exploited the structure im-
posed by game rules (i.e. action types) to limit the search
space and we showed the importance of action (type) legal-
ity. Conditioning on the type legality permitted a Maximum
Likelihood Estimation approach to learn a high-level pol-
icy and be more successful than deep learning techniques.
This result emphasizes the need for simpler and more robust
methods in complex low-resource scenarios. Our strongest
agent heavily relies on the conditioned policy extracted via
MLE. Therefore, the human data has proven essential in cre-
ating the strongest agent despite its limitations.

There are two extensions that we consider fruitful paths
to explore. The POMCP agent with a uniform prior, even
though it’s not the strongest agent, has proven very adapt-
able. We believe accounting for opponent types might aid
our strongest agent to balance the strong bias from the ex-
tracted conditional policy. A possible approach is to use the
policy as a prior in a Bayesian setting, where we allow the
agent to update it depending on the opponents’ types. A re-
lated extension is to account for the opponent beliefs, how-
ever this requires ensuring that the final agent doesn’t exceed
a time limit tolerable by human opponents.
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