
Combining a Mixture of Experts with Transfer Learning in Complex Games

Mihai S. Dobre and Alex Lascarides
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB

Scotland
Email: m.s.dobre@sms.ed.ac.uk, alex@inf.ed.ac.uk

Abstract

We present a supervised approach for learning policies
in a highly complex game from small amounts of hu-
man data consisting of state–action pairs. Our Neural
Network architecture can adapt to the varying size of the
set of legal actions, thus bypassing the need to hardcode
the actions in the output layer or iterate over them. This
makes the training more data efficient. We use synthetic
data created via game simulations among AI agents to
show that a mixture of experts, where each expert pre-
dicts actions in different portions of the game, improves
performance. We then show that this approach applied
to human data also improves performance: in particu-
lar, using transfer learning to enable one expert to learn
from another enhances performance on those portions
of the game for which there is relatively little training
data compared to other portions. The domain chosen for
evaluation is the board game Settlers of Catan.

Introduction
Deep Neural Networks (DNN) (Hinton 2007) have been suc-
cessfully applied to many tasks such as visual processing
(Lecun et al. 1998; Krizhevsky, Sutskever, and Hinton 2012)
and speech (Deng, Hinton, and Kingsbury 2013). They are
particularly suited to tasks where abstract formalisations of
the domain are not available, but large amounts of training
data are available.

Recently, DNNs have been combined with reinforcement
learning algorithms (Mnih et al. 2015) and applied to su-
pervised learning in complex games (Silver et al. 2016). In
very long complex games, the policy used at the beginning
of the game may differ to those used later. Furthermore,
the optimal policies required to handle each phase of the
game may be orthogonal, or too complex, to be represented
by a single model. For these reasons, the best results in
shooter games are achieved by modularising the models into
a mixture of experts, where each expert specialises on one
of the portions of the game (Tastan and Sukthankar 2011;
Lample and Chaplot 2016). These approaches reduce the
number of actions an agent has to consider, making the Q-
function simpler to learn (Gaskett, Wettergreen, and Zelin-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sky 1999). The result is a much shorter training period and
improved performance of the final agent.

In spite of this progress, there are certain limitations of
the above models that we attempt to address in this paper.
Firstly, none of them are easily extended to games where
the set of all legal actions throughout the game is huge. In
such situations, the model should be able adapt to the set
of current legal actions. Secondly, the current approach to
handle more complex games is to increase the depth of the
model and fit more data during the training period. But in
contrast to Go, large amounts of human (expert) data may
simply not exist for the game you aim to model.

In this paper, we present an integrated suite of techniques
for enabling deep learning to cope with small amounts of
training data. We present a mixture of experts model, where
each network specialises on a specific phase of the game,
and we then take advantage of the larger amounts of data
available for certain phases by deploying transfer learning
to those phases for which very little training data is avail-
able. We will show the benefits of using a mixture of ex-
perts on synthetic data gathered from agent simulations in
Settlers of Catan, followed by applying transfer learning on
data gathered from human participants playing the game.

Background
Most deep learning models require large amounts of data,
many iterations and a large computational budget to con-
verge to a reasonable result. In situations where very lit-
tle data is available, the large number of parameters causes
these methods to overfit. In addition, many of the existing
approaches in games use the raw data (Mnih et al. 2015),
thereby enhancing the model’s appetite for very large data
sets to learn useful abstractions. An alternative is to treat the
game representation as a 2D signal (e.g. in Go, Silver et al.
2016), so that a Convolutional Neural Network model can
be employed. But some games cannot be easily represented
this way.

Recent research has focused on games that have a fixed
set of possible actions irrespective of the current state (Mnih
et al. 2015). Thus the network architecture is such that the
final layer size is equal to the number of actions, while the
input is the current state description. But this approach is
not feasible in games where the number of legal actions is
highly dependent on the current state; nor does it scale well



to games where the number of legal actions is much larger
than in games like Go; for instance Civilisation, Diplomacy,
and Settlers of Catan, the game we study in this paper. To
address this gap, we will design our network so that it gains
efficiencies from the fact that only a subset of the possible
actions are legal at any one state of the game.

Other implementations evaluate each state-action pair it-
eratively, without taking into account the other legal actions
in the given state (Branavan, Silver, and Barzilay 2011) or
as a batch update over the full dataset (Riedmiller 2005).
The target values are computed based on the game re-
sult following Monte-Carlo simulations or by allowing the
learned policy to interact with the environment. This ap-
proach, however, requires access to a decent simulation pol-
icy or some way of evaluating the samples. We, on the other
hand, want to extract a policy from a dataset of state-action
pairs. To achieve this we assume that the executed action is
the player’s preferred (optimal) one given its policy and all
available options.

Mixture of experts

Ensemble learning is a popular approach for supervised
learning that uses multiple models to increase performance
and reduce overfitting. A popular approach is the Mixture
of Experts model that is based on the divide and conquer
principle (Masoudnia and Ebrahimpour 2014). Typically, a
set of networks are trained alongside a gating network. The
gating network chooses which expert to use for each sam-
ple (Jacobs et al. 1991). Another approach is to explicitly
partition the space beforehand. Here we do the latter, by tak-
ing advantage of the existing game structure to predefine a
function that chooses the expert deterministically.

Multitask and Transfer Learning

Multitask learning improves generalisation by learning mul-
tiple tasks in parallel while using the same representation
(Caruana 1997). Here, we also partition the problem into
tasks—in our case, each task corresponds to a particular
phase in the game. However, we don’t train the tasks in par-
allel because the training data for one game phase is differ-
ent to that of another. Nevertheless, we still want to transfer
what was learned about one task to another. In computer vi-
sion, for instance, features learned on one task are general
and transferable to other tasks (Yosinski et al. 2014), even
if the samples do not come from the same distribution (Ben-
gio et al. 2011). More generally, transfer learning has proved
useful in both unsupervised (Mesnil et al. 2012) and super-
vised learning (Thrun 1996), but it matters how transferable
the learned features are. Due to the rules of Settlers of Catan,
the training datasets for some tasks are significantly smaller
than for others while the representation is the same, so trans-
ferring the learned features from one task to another may
help improve performance. Furthermore, transfer learning
should keep the experts consistent and the resulting com-
bined policy will be closer to the policy used to play the
games from which the samples were collected.

Settlers of Catan
Prior work on Settlers of Catan mostly focused on (online)
reinforcement learning (Szita, Chaslot, and Spronck 2010;
Dobre and Lascarides 2015) or developing heuristics based
on expert knowledge (Guhe and Lascarides 2014), rather
than supervised learning from attested game play. The only
Deep Neural Networks implementation on the game is done
by Cuayáhuitl, Keizer, and Lemon (2015), who focus only
on predicting the resources that the opponents will trade dur-
ing the negotiations phase. Their approach is an extension
of the DRL algorithm with experience replay (Mnih et al.
2015). So they handle illegal actions by first allowing the
network to reason over them and only exclude these when
the best option is chosen. In contrast, our model learns all
the phases of the game in a supervised fashion, not just the
negotiations part, and it doesn’t require reasoning over pos-
sible but illegal actions in the current state.

Resources
Settlers of Catan
Settlers of Catan is a multi-player win-lose board game. We
focus on the core game for 4 players. The players build
roads, settlements and cities on the board, which is formed
of hexagonal tiles. The first player to reach 10 victory points
wins the game. One obtains victory points in a variety of
ways (e.g. a settlement is 1 point and a city is 2 points).
Board tiles represent one of the five resources (clay, ore,
sheep, wood and wheat), desert, water or ports. Each of the
resource producing tiles has an associated number between
2 and 12. Players obtain resources via the location of their
buildings and dice rolls that start each turn of the game. One
needs different combinations of resources to build different
pieces (e.g. a road costs 1 clay and 1 wood). In addition to
dice rolls, players can acquire resources through trades with
the bank (at a 4:1 ratio), or with a port if they have a set-
tlement or city there (3:1 or 2:1, depending on the port) or
through negotiated trades with other players. There are many
special actions which increase the complexity of the game,
such as playing development cards that each give different
advantages; e.g. moving the robber and stealing resources
from other players or gaining victory points via the longest
road or largest army (see www.catan.com for details). The
only modifications that we make to the game rules is that
our models only consider 1:1, 1:2 and 2:1 resource trades
with other players. This simplification retains a large set of
possible trades (up to 540).

Game analysis
From a game theoretic perspective, Settlers of Catan is a
very complex game. In addition to the incomplete informa-
tion (i.e. the opponent’s types), the game contains elements
of imperfect information (the resources that opponents pos-
sess and the unplayed development cards) and it is stochastic
(dice rolls determine the players’ resources). It has a large
branching factor e.g. there’s a wide range of negotiation ac-
tions for trading resources. The generation of the board is
done by shuffling the hexes, so the game has a huge space
of possible initial states (≈ 1.2 ∗ 1015 compared to 1 for



the game of Go).1 Table 1 contains approximations of the
branching and depth factors, given 3 different sampling poli-
cies: Human is based on 60 human games (Afantenos et al.
2012), Heuristic on 1000 simulated games played by four
rule-based AI agents and Random on 1000 simulated games
with 4 players choosing actions randomly. Due to how these
games have been logged, trades are considered as a single
exchange action and negotiations (i.e. offer, accept and re-
ject actions) are not counted, hence the depths reported here
are smaller than the real depths.

Policy Branch Depth
Human 63 152
Heuristic 69 234
Random 64 11639

Table 1: Average branching and depth. Many of the human
games have 2 or 3 players, hence the smaller depth.

While Settlers of Catan is highly complex, it also has a
clear structure. Actions can be grouped into several types,
e.g. trade actions or build road actions. Depending on the
current state description, only certain action types are legal.
We use a deterministic function to separate the game into 6
phases, based on what action types are legal, such that there
is minimum overlap between the phases:

0 Free road building; this is either the initial state where
the agent places two free roads, or the two free roads that
stem from having just played a ’road building’ develop-
ment card;

1 Free settlement building, during the initial placement part
of the game;

2 The normal state: this is a state where the agent can build,
trade, buy/play development card or end their turn;

3 Before rolling the dice state: the agent can decide between
playing a development card or rolling the dice;

4 Discard state due to a 7 being rolled: the agent has to dis-
card half of the resources it is holding;

5 Moving robber state due to a 7 being rolled: the agent
has to move the robber and steal one resource from an
opponent.

While our experiments are on Settlers of Catan, many
other games exhibit the same properties. Most complex
games can be separated into phases in which different types
of actions are legal. In fact, this separation is clearly pre-
sented in the game rules for Civilisation, Diplomacy, Bat-
tlestar Galactica, Cosmic Encounter, to name a few. Our ap-
proach could be applied to any games with such characteris-
tics.

Software and Data
The synthetic data was collected from 4-player game sim-
ulations in the JSettlers framework using a state of the art

1We are not shuffling the production numbers, which would in-
crease the space further.

heuristic agent as the players (Guhe and Lascarides 2014).
The human data has been collected from 60 human games.
We use only the trades that have been executed in the game
during training. This may diverge from the player’s preferred
trade option in some cases—we will train on the negotiation
actions in future work. We build our DNN model by extend-
ing the Deeplearning4j version 0.4-rc3.10 (Deeplearning4j
2016).

Features
The input is a 1D vector of numerical features, taken directly
from the game state representation plus a set of features that
abstract over the coordinates of pieces and board configura-
tion. The abstraction is necessary for effective learning from
the very small training sets of human data that we have ac-
cess to. Information on the number of pieces on the board
of each type, the robber, longest roads, award owners and
the visible information on development cards and player’s
hands is taken directly from the game state. The exact loca-
tion of each piece is represented via their significance with
regards to the board description by including the information
on resource production, the expansion possibility (i.e. if the
player is blocked) and future production of the closest legal
locations. Since we are abstracting state descriptions from
the board coordinates, we need to also represent the actions
as feature vectors. We achieve this by subtracting the state
vector in which the action was executed from the outcome
state vector. Only the features that can be modified by ac-
tions are included in the feature vector describing an action.
The imperfect information is handled by assuming that the
players have no information aside from the observable por-
tion of the game (since the human games do not include in-
formation on the players’ beliefs). For non-deterministic ac-
tions, specific features are computed using the expected out-
come following the game rules (e.g. resource production is
decided based on the chances of rolling two six-sided dice).
The action of stealing is the only exception, since the player
executing the action doesn’t know the victim’s hand. None
of the features presented above inform the model of the ben-
efits of certain actions. There are a total of 157 state fea-
tures and 73 action features. The complete list of features,
including their value ranges, will be released with the code
at https://github.com/sorinMD/deepCatan.

Model description
Our goal is to make our network adaptable to the number of
legal actions in the current state. We inform the network of
this number—let’s call it n—via the shape of the input. So,
the input is a matrix, where each row is a vector of features
that represent the current state and one of the legal actions.
This is achieved by replicating the state vector n times, con-
catenating each of them with the vector describing one of the
legal actions and stacking the resulting vectors. The result-
ing matrix has n rows and 230 columns, where n is the num-
ber of legal actions and 230 (157+73) is the size of the fea-
ture vector resulting from concatenating the state and action
representations. This stacked input can be seen as a mini-
batch. However, the size of this minibatch varies since the
number n of legal actions varies from one state to another.



In
pu

t

Si
gm

oi
d

R
el

u

So
ft

m
ax

230

n

Figure 1: The DNN model

The network is a feedforward neural network with two
hidden layers, as shown in Figure 1. Both hidden layers are
fully-connected with 256 nodes. The first layer has a sig-
moid activation function while the second one uses a rectifier
activation function. The output layer is a softmax layer with
a single unit. So we achieved the adaptable output layer by
turning the multi-class problem into a single class with mul-
tiple inputs. The network doesn’t predict which is the cor-
rect class given the input, but rather what is the likelihood
of each input being the correct one (taking into account the
other options).

We changed the softmax formula such that it iterates over
each input, as shown in equation 1. There is a single class y
with the corresponding set of weights w, but there are multi-
ple inputs x. Since the partial derivative of this function with
respect to its input wTx is equivalent to that of the standard
softmax, the derivative of the error with respect to the net-
work’s weights is the same and the training can be done via
the standard backpropagation algorithm.

P (y|x) = ew
T x∑

x′ ew
T x′ (1)

Even though the softmax output layer is made of a sin-
gle unit, it can handle any number of rows of the input ma-
trix. In fact, the network architecture is equivalent to eval-
uating each state-action pair iteratively and turning the re-
sulting vector into a probability distribution. This approach
assumes a mutual exclusivity between the available state-
action pairs, forcing the network to rank the options in the
order of preference according to their features. It also nor-
malises the output, making the training more stable. The
alternative to our approach is to consider each state-action
pair separately and perform a binary classification while it-
erating over each sample. The large branching factor of the
game would cause the data to be skewed towards the nega-
tive case, resulting in poor performance and unstable train-
ing. Another advantage to our architecture is the ability to
evaluate all possible actions in a given state with only a sin-
gle forward pass through the network. It is also straightfor-
ward to extend to the minibatch (of states) case. Most of the
forward pass would be computed in parallel, except for the
softmax operation which needs to be computed iteratively

on each portion of the input corresponding to a set of state-
action pairs.

Since our features are numerical, we normalise the input
such that it has 0 mean and unit variance. During training we
feed the network one sample at a time, where each sample is
a set of the legal state-action pairs stacked in a matrix format
as described above. The updates are done using RMSProp:2
they are performed using the minibatches of size equal to
the number of legal actions. We noticed a large improvement
when using RMSProp compared to the simple update rule.
We also tried using minibatches of states, but these gave no
improvements. This could be caused by the lack of data or by
the fact that the number of legal actions has a huge variance
throughout the game. We initialised the network’s weights
using the Xavier algorithm (Glorot and Bengio 2010).

The size of the network, activation functions, initialisa-
tion and update methods were chosen based on the perfor-
mance on a different evaluation set made of synthetic data.
Since this model will eventually be combined with a sam-
pling method to create an agent that takes decisions in an
online manner, the prediction time was another reason for
keeping the size of the model relatively small compared to
the state of the art in other domains.

Our best model is a mixture of experts model with 6 ex-
perts, one for each phase of the game. Since we split the
game via a deterministic function, all training data is sepa-
rated beforehand. We train each expert on the corresponding
dataset by minimising the cross-entropy loss. Due to the ab-
straction described in the previous section, the target action
that the network tries to learn may be encountered twice in
the list of legal actions. We handle this rare case by giving
equal weight to each of the corresponding indices in the tar-
get vector, so the sum of the vector is still equal to 1. During
evaluation either option is considered correct.

The human data consists of only 60 games. Due to the
game rules, the data available for some of the tasks is in-
sufficient to achieve a decent prediction accuracy (e.g. 200
samples for task 4). On the other hand, there are many more
samples available for other tasks (e.g. 6k training samples
for task 2). To increase the performance on tasks that lack
data, we use transfer learning: we initialise the network’s
weights by pretraining for several epochs on the data avail-
able for the other tasks. The number of epochs was finetuned
to the specific task, e.g. the best performance on task 4 was
achieved after 10 pretraining epochs, while task 5 required
only 5 epochs. Previous work has evaluated the performance
of the network after transferring only part of it, while ran-
domly reinitialising the weights of the rest. We achieved the
best performance by transferring the weights of the full net-
work, which enforces our belief that both the representation
and the policy captured during pretraining contributed to the
increase in performance.

Results and analysis
We will present two set of experiments: one on the synthetic
data and one on the human data. For each of these we com-

2http://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture slides
lec6.pdf



pare the DNN model against a frequency based baseline,
which chooses the most frequent action from the training
set. We will show the need for a mixture of experts on the
synthetic data, by comparing a single model that fits all 6
tasks against a combination of 6 models, one for each task.
We have access to a large amount of synthetic training data,
therefore transfer learning would not improve the perfor-
mance of the models. However, we will show the benefits of
transfer learning when training on the small human dataset.
We report our results as accuracy defined as the number of
times the model selects the correct action over the total num-
ber of samples. This choice reflects the goal of learning to
imitate the policy that generated the data and not predicting
the actions’ class.

Baseline
Table 2 contains the accuracy of the frequency based model
on the two datasets. For this experiment only, the human data
was split in two sets: 90% for training and 10% for evalua-
tion. Both the single model and the mixture of experts easily
outperform this baseline. The inability of the baseline to se-
lect the correct option on the initial placement task is most
likely due to the large number of initial board positions. It
is very unlikely that the same action will be available and
also chosen by the rule-based agents across multiple games.
On the other hand, task 3 contains the roll action which is
very often chosen over the alternative of playing a knight
card. Also, it seems the human players prefer ending their
turn over other actions in the normal task (i.e. task 2). Per-
haps, this is due to a preference for waiting to roll the needed
resources over trading with the opponents. Despite the high
baseline performance, the mixture of experts model with or
without transfer learning is significantly better (see tables 5
and 6).

Task Synthetic Human
Eval Train Eval Train

0 29.09% 28.82% 39.77% 33.52%
1 0% 0% 0% 0%
2 6.58% 6.42% 50.51% 50.98%
3 75.09% 75.22% 77.17% 74.25%
4 11.18% 10.36% 13.16% 4.55%
5 8.33% 8.06% 4.71% 4.8%

Table 2: Baseline performance on both datasets.

Synthetic data
The results in Table 4 show that the mixture of experts model
scales with the increase of the size of training data. The
“Eval” column is the model’s performance on 10k held-out
test data; the “Train” column is the model’s performance on
the training data (to test for overfitting). The results of the
single model are shown in Table 3. It is trained on all 300k
(i.e. 6×50k) training samples, by iteratively fitting one sam-
ple from each task similar to the multi-task approach. We
noticed this resulted in a much higher performance than just
randomising over the whole dataset. Even so, the mixture of

experts model trained on the full dataset significantly out-
performs the single model on all 6 tasks (compare Table 3
and the last 2 columns of Table 4): we used the z-test and a
threshold p < 0.05 as this significance test, with the null hy-
pothesis that the performance of the mixture of experts and
singe models are equivalent.

Task Evaluation Train
0 67.01% 66.88%
1 65.98% 65.75%
2 48.35% 47.30%
3 80.07% 80.38%
4 38.87% 40.36%
5 23.16% 24.51%

Table 3: Single model performance on synthetic data.

Human data
In the interest of space we will not include the results of
the single model. This model presented slightly better per-
formance compared to the standard mixture of experts, in-
dicating the benefits of sharing the knowledge between the
phases when small amounts of data is available. However,
we observed that the training was very unstable and the ac-
curacy on each task fluctuated rather than having a steady
increase with the epochs. Also, when the best performance
on one of the tasks was observed, the performance on others
was relatively weak, making it impossible to decide when to
stop the training. The most likely cause is the lack of data
in combination with the large difference in the size of the
training sets. This is a characteristic of complex games: or
mixture of experts model addresses this.

We evaluated our models with 10-fold cross-validation
over the whole set of human samples. In addition to dis-
playing the evaluation and training accuracy, we included
the 90% confidence intervals in the tables. Due to the lack
of data and the multitude of policies responsible for gener-
ating the human data (Afantenos et al. 2012) a weaker per-
formance compared to the results on the synthetic data is
expected, as observed in tasks 0, 1 and 4 in Table 5. The re-
sults for the remaining tasks are very similar. However, the
performance on the move robber task is better. We believe
this may be due to the features chosen, which may enable
the learning algorithm to learn to explain a human behaviour
much better than that of a complex heuristic agent that per-
forms obscure computations over and above those including
the visible features.

Task Evaluation Eval CI. Train
0 47.04% ±3.85 50.82%
1 22.56% ±3.31 27.63%
2 59.62% ±0.95 61.71%
3 81.3% ±3.29 82.89%
4 22.1% ±4.95 25.02%
5 37.76% ±3.12 47.59%

Table 5: Mixture of experts performance on human data.



Task Size of training set
5k 10k 25k 50k

Eval Train Eval Train Eval Train Eval Train
0 60.23% 59.32% 61.67% 62.45% 66.45% 71.50% 68.51% 70.90%
1 72.23% 76.74% 71.86% 73.9% 73.21% 73.96% 73.83% 73.45%
2 55.81% 55.97% 56.86% 57.90% 58.35% 58.39% 58.65% 59.33%
3 80.72% 85.1% 81.28% 85.31% 81.16% 86.11% 81.49% 84.76%
4 36.26% 54.34% 39.50% 46.48% 42.24% 55.42% 42.24% 55.42%
5 24.78% 33.24% 27.57% 39.34% 29.9% 42.08% 29.67% 36.92%

Table 4: Accuracy on synthetic data of the mixture of experts model while varying the amount of data available for training3.

As expected, transfer learning works best for fitting the
tasks where less data is available, i.e. the initial placement(1)
and discard tasks(4) (see Table 6). Even though the effect of
the actions is not exactly the same across different tasks (e.g.
placing the initial settlements yields an immediate produc-
tion, in contrast to building a settlement in the normal part
of the game), the weights learned over the other tasks help
the neural net explain why certain features are important for
the target task also. We didn’t see any improvements for the
normal (2) and free road (0) tasks. The training data for task
2 is sufficient, while task 0 bares very little resemblance to
any other task. The feature abstraction is also causing issues
in task 0, as most of the cases where actions are confused
with each other are included in this dataset. In future work,
we aim to improve the abstraction performed.

Task Evaluation Eval. CI. Train
0 46.59% ±4.86 51.94%
1 27.44% ±4.23 32.11%
2 59.57% ±1.02 62.79%
3 83.69% ±1.85 87.25%
4 32.11% ±3.75 49.71%
5 38.71% ±2.39 40.23%

Table 6: Transfer learning between experts on human data.

The goal of this research is to have a decent policy estima-
tion that can predict human play, so we can bias the search
during online learning. Therefore we are also interested in
how the network ranks all the legal actions and how far the
correct action is from the network’s preferred option. Fig-
ure 2 shows the accuracy of the mixture of expert model as
we allow the correct option to be in the first n options in the
output (the value of n is given by the x axis). The accuracy
for task 0 has an unusual curve due to most of the samples
only containing 3 options, while the other tasks have many
more than 10 legal actions (given the branching factor of the
game tree). Overall, the correct option is within the model’s
top 10 options 80% of the time. Therefore the model could
be used to perform soft pruning of a search tree during on-
line learning.

3One epoch of training over 50k data on task 2 where the
branching factor is 89, takes approximately 2 and a half minutes
on one Nvidia GTX TITAN X GPU.

Figure 2: Percentage of correct classifications up to the first
10 choices of the best model trained on human data.

Conclusion
We have presented a method of enhancing the supervised
learning procedure in a very complex game, where the set of
possible actions irrespective of the current state is huge. Our
neural network architecture adapts to the current set of legal
actions and evaluates them simultaneously. By excluding the
set of illegal actions in the current state and evaluating only
the legal actions using the same set of weights, the amount of
data required is reduced. The generality of the architecture
allows similarities between training datasets to be exploited
via transfer learning, further increasing the model’s perfor-
mance on portions of the game where small amounts of data
are available. Further benefits stem from combining trans-
fer learning with a mixture of experts. In future work, we
will compare our adaptable architecture to standard architec-
tures while employing different methods of handling skewed
datasets or large multi-class classification problems. We will
also combine our best model with a sampling method, with
the aim of creating a strong Settlers of Catan player. The end
goal is to show that even small amounts of human data can
be used to create a strong player in complex games.

Acknowledgments
We thank the reviewers for their helpful suggestions. This
work is supported by ERC grant 269427 (STAC) and Engi-
neering and Physical Sciences Research Council (EPSRC).



References
Afantenos, S.; Asher, N.; Benamara, F.; Cadilhac, A.; De-
gremont, C.; Denis, P.; Guhe, M.; Keizer, S.; Lascarides, A.;
Oliver Lemon, P. M.; Paul, S.; Rieser, V.; and Vieu, L. 2012.
Developing a corpus of strategic conversation in the settlers
of catan. In Proceedings of the 1st Workshop on Games and
NLP.
Bengio, Y.; Bastien, F.; Bergeron, A.; Boulanger-
lewandowski, N.; Breuel, T. M.; Chherawala, Y.; Cisse,
M.; Ct, M.; Erhan, D.; Eustache, J.; Glorot, X.; Muller,
X.; Lebeuf, S. P.; Pascanu, R.; Rifai, S.; Savard, F.; and
Sicard, G. 2011. Deep learners benefit more from out-of-
distribution examples. In Gordon, G. J., and Dunson, D. B.,
eds., Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics (AISTATS-11),
volume 15, 164–172. Journal of Machine Learning
Research - Workshop and Conference Proceedings.
Branavan, S. R. K.; Silver, D.; and Barzilay, R. 2011. Learn-
ing to win by reading manuals in a monte-carlo framework.
In Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies - Volume 1, HLT ’11, 268–277. Stroudsburg, PA,
USA: Association for Computational Linguistics.
Caruana, R. 1997. Multitask learning. In Machine Learning,
41–75.
Cuayáhuitl, H.; Keizer, S.; and Lemon, O. 2015. Strate-
gic dialogue management via deep reinforcement learning.
CoRR abs/1511.08099.
Deeplearning4j, D. T. 2016. Deeplearning4j: Open-source
distributed deep learning for the jvm, apache software foun-
dation license 2.0. http://deeplearning4j.org.
Deng, L.; Hinton, G.; and Kingsbury, B. 2013. New types
of deep neural network learning for speech recognition and
related applications: An overview. In in Proc. Int. Conf.
Acoust., Speech, Signal Process.
Dobre, M., and Lascarides, A. 2015. Online learning and
mining human play in complex games. In Proceedings of the
IEEE Conference on Computational Intelligence in Games.
Gaskett, C.; Wettergreen, D.; and Zelinsky, A. 1999. Q-
learning in continuous state and action spaces. In Proceed-
ings of the 12th Australian Joint Conference on Artificial
Intelligence: Advanced Topics in Artificial Intelligence, AI
’99, 417–428. London, UK, UK: Springer-Verlag.
Glorot, X., and Bengio, Y. 2010. Understanding the dif-
ficulty of training deep feedforward neural networks. In In
Proceedings of the International Conference on Artificial In-
telligence and Statistics (AISTATS10). Society for Artificial
Intelligence and Statistics.
Guhe, M., and Lascarides, A. 2014. Game strategies in the
settlers of catan. In Proceedings of the IEEE Conference on
Computational Intelligence in Games.
Hinton, G. E. 2007. Learning multiple layers of representa-
tion. Trends in Cognitive Sciences 11:428–434.
Jacobs, R. A.; Jordan, M. I.; Nowlan, S. J.; and Hinton, G. E.
1991. Adaptive mixtures of local experts. Neural Comput.
3(1):79–87.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States.,
1106–1114.
Lample, G., and Chaplot, D. S. 2016. Playing FPS games
with deep reinforcement learning. CoRR abs/1609.05521.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, 2278–2324.
Masoudnia, S., and Ebrahimpour, R. 2014. Mixture of
experts: a literature survey. Artificial Intelligence Review
42(2):275–293.
Mesnil, G.; Dauphin, Y.; Glorot, X.; Rifai, S.; Bengio,
Y.; Goodfellow, I. J.; Lavoie, E.; Muller, X.; Desjardins,
G.; Warde-Farley, D.; Vincent, P.; Courville, A. C.; and
Bergstra, J. 2012. Unsupervised and transfer learning chal-
lenge: a deep learning approach. In Guyon, I.; Dror, G.;
Lemaire, V.; Taylor, G. W.; and Silver, D. L., eds., ICML
Unsupervised and Transfer Learning, volume 27 of JMLR
Proceedings, 97–110. JMLR.org.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Riedmiller, M. 2005. Neural fitted q iteration first expe-
riences with a data efficient neural reinforcement learning
method. In In 16th European Conference on Machine Learn-
ing, 317–328. Springer.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484–503.
Szita, I.; Chaslot, G.; and Spronck, P. 2010. Monte-carlo
tree search in settlers of catan. In van den Herik, H., and
Spronck, P., eds., Advances in Computer Games. Springer.
21–32.
Tastan, B., and Sukthankar, G. R. 2011. Learning policies
for first person shooter games using inverse reinforcement
learning. In Bulitko, V., and Riedl, M. O., eds., AIIDE. The
AAAI Press.
Thrun, S. 1996. Is learning the n-th thing any easier than
learning the first? In Advances in Neural Information Pro-
cessing Systems, 640–646. The MIT Press.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N.; and
Weinberger, K., eds., Advances in Neural Information Pro-
cessing Systems 27. Curran Associates, Inc. 3320–3328.


